347 lines
12 KiB
Markdown
347 lines
12 KiB
Markdown
|
---
|
||
|
comments: true
|
||
|
description: Explore the YOLO command line interface (CLI) for easy execution of detection tasks without needing a Python environment.
|
||
|
keywords: YOLO CLI, command line interface, YOLO commands, detection tasks, Ultralytics, model training, model prediction
|
||
|
---
|
||
|
|
||
|
# Command Line Interface
|
||
|
|
||
|
The Ultralytics command line interface (CLI) provides a straightforward way to use Ultralytics YOLO models without needing a Python environment. The CLI supports running various tasks directly from the terminal using the `yolo` command, requiring no customization or Python code.
|
||
|
|
||
|
<p align="center">
|
||
|
<br>
|
||
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=19"
|
||
|
title="YouTube video player" frameborder="0"
|
||
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||
|
allowfullscreen>
|
||
|
</iframe>
|
||
|
<br>
|
||
|
<strong>Watch:</strong> Mastering Ultralytics YOLO: CLI
|
||
|
</p>
|
||
|
|
||
|
!!! example
|
||
|
|
||
|
=== "Syntax"
|
||
|
|
||
|
Ultralytics `yolo` commands use the following syntax:
|
||
|
```bash
|
||
|
yolo TASK MODE ARGS
|
||
|
```
|
||
|
|
||
|
Where:
|
||
|
- `TASK` (optional) is one of [detect, segment, classify, pose, obb]
|
||
|
- `MODE` (required) is one of [train, val, predict, export, track, benchmark]
|
||
|
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults.
|
||
|
|
||
|
See all ARGS in the full [Configuration Guide](cfg.md) or with `yolo cfg`.
|
||
|
|
||
|
=== "Train"
|
||
|
|
||
|
Train a detection model for 10 [epochs](https://www.ultralytics.com/glossary/epoch) with an initial [learning rate](https://www.ultralytics.com/glossary/learning-rate) of 0.01:
|
||
|
|
||
|
```bash
|
||
|
yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
|
||
|
```
|
||
|
|
||
|
=== "Predict"
|
||
|
|
||
|
Predict using a pretrained segmentation model on a YouTube video at image size 320:
|
||
|
|
||
|
```bash
|
||
|
yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
|
||
|
```
|
||
|
|
||
|
=== "Val"
|
||
|
|
||
|
Validate a pretrained detection model with a [batch size](https://www.ultralytics.com/glossary/batch-size) of 1 and image size 640:
|
||
|
|
||
|
```bash
|
||
|
yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
|
||
|
```
|
||
|
|
||
|
=== "Export"
|
||
|
|
||
|
Export a YOLO classification model to ONNX format with image size 224x128 (no TASK required):
|
||
|
|
||
|
```bash
|
||
|
yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
|
||
|
```
|
||
|
|
||
|
=== "Special"
|
||
|
|
||
|
Run special commands to view version, settings, run checks, and more:
|
||
|
|
||
|
```bash
|
||
|
yolo help
|
||
|
yolo checks
|
||
|
yolo version
|
||
|
yolo settings
|
||
|
yolo copy-cfg
|
||
|
yolo cfg
|
||
|
```
|
||
|
|
||
|
Where:
|
||
|
|
||
|
- `TASK` (optional) is one of `[detect, segment, classify, pose, obb]`. If not explicitly passed, YOLO will attempt to infer the `TASK` from the model type.
|
||
|
- `MODE` (required) is one of `[train, val, predict, export, track, benchmark]`
|
||
|
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. For a full list of available `ARGS`, see the [Configuration](cfg.md) page and `defaults.yaml`.
|
||
|
|
||
|
!!! warning
|
||
|
|
||
|
Arguments must be passed as `arg=val` pairs, separated by an equals `=` sign and delimited by spaces between pairs. Do not use `--` argument prefixes or commas `,` between arguments.
|
||
|
|
||
|
- `yolo predict model=yolo11n.pt imgsz=640 conf=0.25` ✅
|
||
|
- `yolo predict model yolo11n.pt imgsz 640 conf 0.25` ❌
|
||
|
- `yolo predict --model yolo11n.pt --imgsz 640 --conf 0.25` ❌
|
||
|
|
||
|
## Train
|
||
|
|
||
|
Train YOLO on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments, see the [Configuration](cfg.md) page.
|
||
|
|
||
|
!!! example
|
||
|
|
||
|
=== "Train"
|
||
|
|
||
|
Start training YOLO11n on COCO8 for 100 epochs at image size 640:
|
||
|
|
||
|
```bash
|
||
|
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640
|
||
|
```
|
||
|
|
||
|
=== "Resume"
|
||
|
|
||
|
Resume an interrupted training session:
|
||
|
|
||
|
```bash
|
||
|
yolo detect train resume model=last.pt
|
||
|
```
|
||
|
|
||
|
## Val
|
||
|
|
||
|
Validate the [accuracy](https://www.ultralytics.com/glossary/accuracy) of the trained model on the COCO8 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||
|
|
||
|
!!! example
|
||
|
|
||
|
=== "Official"
|
||
|
|
||
|
Validate an official YOLO11n model:
|
||
|
|
||
|
```bash
|
||
|
yolo detect val model=yolo11n.pt
|
||
|
```
|
||
|
|
||
|
=== "Custom"
|
||
|
|
||
|
Validate a custom-trained model:
|
||
|
|
||
|
```bash
|
||
|
yolo detect val model=path/to/best.pt
|
||
|
```
|
||
|
|
||
|
## Predict
|
||
|
|
||
|
Use a trained model to run predictions on images.
|
||
|
|
||
|
!!! example
|
||
|
|
||
|
=== "Official"
|
||
|
|
||
|
Predict with an official YOLO11n model:
|
||
|
|
||
|
```bash
|
||
|
yolo detect predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
|
||
|
```
|
||
|
|
||
|
=== "Custom"
|
||
|
|
||
|
Predict with a custom model:
|
||
|
|
||
|
```bash
|
||
|
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'
|
||
|
```
|
||
|
|
||
|
## Export
|
||
|
|
||
|
Export a model to a different format like ONNX or CoreML.
|
||
|
|
||
|
!!! example
|
||
|
|
||
|
=== "Official"
|
||
|
|
||
|
Export an official YOLO11n model to ONNX format:
|
||
|
|
||
|
```bash
|
||
|
yolo export model=yolo11n.pt format=onnx
|
||
|
```
|
||
|
|
||
|
=== "Custom"
|
||
|
|
||
|
Export a custom-trained model to ONNX format:
|
||
|
|
||
|
```bash
|
||
|
yolo export model=path/to/best.pt format=onnx
|
||
|
```
|
||
|
|
||
|
Available Ultralytics export formats are in the table below. You can export to any format using the `format` argument, i.e., `format='onnx'` or `format='engine'`.
|
||
|
|
||
|
{% include "macros/export-table.md" %}
|
||
|
|
||
|
See full `export` details on the [Export](../modes/export.md) page.
|
||
|
|
||
|
## Overriding Default Arguments
|
||
|
|
||
|
Override default arguments by passing them in the CLI as `arg=value` pairs.
|
||
|
|
||
|
!!! tip
|
||
|
|
||
|
=== "Train"
|
||
|
|
||
|
Train a detection model for 10 epochs with a learning rate of 0.01:
|
||
|
|
||
|
```bash
|
||
|
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
|
||
|
```
|
||
|
|
||
|
=== "Predict"
|
||
|
|
||
|
Predict using a pretrained segmentation model on a YouTube video at image size 320:
|
||
|
|
||
|
```bash
|
||
|
yolo segment predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
|
||
|
```
|
||
|
|
||
|
=== "Val"
|
||
|
|
||
|
Validate a pretrained detection model with a batch size of 1 and image size 640:
|
||
|
|
||
|
```bash
|
||
|
yolo detect val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
|
||
|
```
|
||
|
|
||
|
## Overriding Default Config File
|
||
|
|
||
|
Override the `default.yaml` configuration file entirely by passing a new file with the `cfg` argument, such as `cfg=custom.yaml`.
|
||
|
|
||
|
To do this, first create a copy of `default.yaml` in your current working directory with the `yolo copy-cfg` command, which creates a `default_copy.yaml` file.
|
||
|
|
||
|
You can then pass this file as `cfg=default_copy.yaml` along with any additional arguments, like `imgsz=320` in this example:
|
||
|
|
||
|
!!! example
|
||
|
|
||
|
=== "CLI"
|
||
|
|
||
|
```bash
|
||
|
yolo copy-cfg
|
||
|
yolo cfg=default_copy.yaml imgsz=320
|
||
|
```
|
||
|
|
||
|
## Solutions Commands
|
||
|
|
||
|
Ultralytics provides ready-to-use solutions for common computer vision applications through the CLI. These solutions simplify implementation of complex tasks like object counting, workout monitoring, and queue management.
|
||
|
|
||
|
!!! example
|
||
|
|
||
|
=== "Count"
|
||
|
|
||
|
Count objects in a video or live stream:
|
||
|
|
||
|
```bash
|
||
|
yolo solutions count show=True
|
||
|
yolo solutions count source="path/to/video.mp4" # specify video file path
|
||
|
```
|
||
|
|
||
|
=== "Workout"
|
||
|
|
||
|
Monitor workout exercises using a pose model:
|
||
|
|
||
|
```bash
|
||
|
yolo solutions workout show=True
|
||
|
yolo solutions workout source="path/to/video.mp4" # specify video file path
|
||
|
|
||
|
# Use keypoints for ab-workouts
|
||
|
yolo solutions workout kpts=[5, 11, 13] # left side
|
||
|
yolo solutions workout kpts=[6, 12, 14] # right side
|
||
|
```
|
||
|
|
||
|
=== "Queue"
|
||
|
|
||
|
Count objects in a designated queue or region:
|
||
|
|
||
|
```bash
|
||
|
yolo solutions queue show=True
|
||
|
yolo solutions queue source="path/to/video.mp4" # specify video file path
|
||
|
yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" # configure queue coordinates
|
||
|
```
|
||
|
|
||
|
=== "Inference"
|
||
|
|
||
|
Perform object detection, instance segmentation, or pose estimation in a web browser using Streamlit:
|
||
|
|
||
|
```bash
|
||
|
yolo solutions inference
|
||
|
yolo solutions inference model="path/to/model.pt" # use custom model
|
||
|
```
|
||
|
|
||
|
=== "Help"
|
||
|
|
||
|
View available solutions and their options:
|
||
|
|
||
|
```bash
|
||
|
yolo solutions help
|
||
|
```
|
||
|
|
||
|
For more information on Ultralytics solutions, visit the [Solutions](../solutions/index.md) page.
|
||
|
|
||
|
## FAQ
|
||
|
|
||
|
### How do I use the Ultralytics YOLO command line interface (CLI) for model training?
|
||
|
|
||
|
To train a model using the CLI, execute a single-line command in the terminal. For example, to train a detection model for 10 epochs with a [learning rate](https://www.ultralytics.com/glossary/learning-rate) of 0.01, run:
|
||
|
|
||
|
```bash
|
||
|
yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
|
||
|
```
|
||
|
|
||
|
This command uses the `train` mode with specific arguments. For a full list of available arguments, refer to the [Configuration Guide](cfg.md).
|
||
|
|
||
|
### What tasks can I perform with the Ultralytics YOLO CLI?
|
||
|
|
||
|
The Ultralytics YOLO CLI supports various tasks, including [detection](../tasks/detect.md), [segmentation](../tasks/segment.md), [classification](../tasks/classify.md), [pose estimation](../tasks/pose.md), and [oriented bounding box detection](../tasks/obb.md). You can also perform operations like:
|
||
|
|
||
|
- **Train a Model**: Run `yolo train data=<data.yaml> model=<model.pt> epochs=<num>`.
|
||
|
- **Run Predictions**: Use `yolo predict model=<model.pt> source=<data_source> imgsz=<image_size>`.
|
||
|
- **Export a Model**: Execute `yolo export model=<model.pt> format=<export_format>`.
|
||
|
- **Use Solutions**: Run `yolo solutions <solution_name>` for ready-made applications.
|
||
|
|
||
|
Customize each task with various arguments. For detailed syntax and examples, see the respective sections like [Train](#train), [Predict](#predict), and [Export](#export).
|
||
|
|
||
|
### How can I validate the accuracy of a trained YOLO model using the CLI?
|
||
|
|
||
|
To validate a model's [accuracy](https://www.ultralytics.com/glossary/accuracy), use the `val` mode. For example, to validate a pretrained detection model with a [batch size](https://www.ultralytics.com/glossary/batch-size) of 1 and an image size of 640, run:
|
||
|
|
||
|
```bash
|
||
|
yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
|
||
|
```
|
||
|
|
||
|
This command evaluates the model on the specified dataset and provides performance metrics like [mAP](https://www.ultralytics.com/glossary/mean-average-precision-map), [precision](https://www.ultralytics.com/glossary/precision), and [recall](https://www.ultralytics.com/glossary/recall). For more details, refer to the [Val](#val) section.
|
||
|
|
||
|
### What formats can I export my YOLO models to using the CLI?
|
||
|
|
||
|
You can export YOLO models to various formats including ONNX, TensorRT, CoreML, TensorFlow, and more. For instance, to export a model to ONNX format, run:
|
||
|
|
||
|
```bash
|
||
|
yolo export model=yolo11n.pt format=onnx
|
||
|
```
|
||
|
|
||
|
The export command supports numerous options to optimize your model for specific deployment environments. For complete details on all available export formats and their specific parameters, visit the [Export](../modes/export.md) page.
|
||
|
|
||
|
### How do I use the pre-built solutions in the Ultralytics CLI?
|
||
|
|
||
|
Ultralytics provides ready-to-use solutions through the `solutions` command. For example, to count objects in a video:
|
||
|
|
||
|
```bash
|
||
|
yolo solutions count source="path/to/video.mp4"
|
||
|
```
|
||
|
|
||
|
These solutions require minimal configuration and provide immediate functionality for common computer vision tasks. To see all available solutions, run `yolo solutions help`. Each solution has specific parameters that can be customized to fit your needs.
|