image_to_pixle_params_yoloSAM/ultralytics-main/tests/test_cuda.py

217 lines
7.9 KiB
Python
Raw Permalink Normal View History

2025-07-14 17:36:53 +08:00
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from itertools import product
from pathlib import Path
import pytest
import torch
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
from ultralytics import YOLO
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
from ultralytics.utils import ASSETS, IS_JETSON, WEIGHTS_DIR
from ultralytics.utils.autodevice import GPUInfo
from ultralytics.utils.checks import check_amp
from ultralytics.utils.torch_utils import TORCH_1_13
# Try to find idle devices if CUDA is available
DEVICES = []
if CUDA_IS_AVAILABLE:
if IS_JETSON:
DEVICES = [0] # NVIDIA Jetson only has one GPU and does not fully support pynvml library
else:
gpu_info = GPUInfo()
gpu_info.print_status()
autodevice_fraction = __import__("os").environ.get("YOLO_AUTODEVICE_FRACTION_FREE", 0.3)
idle_gpus = gpu_info.select_idle_gpu(
count=2, min_memory_fraction=autodevice_fraction, min_util_fraction=autodevice_fraction
)
if idle_gpus:
DEVICES = idle_gpus
def test_checks():
"""Validate CUDA settings against torch CUDA functions."""
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
def test_amp():
"""Test AMP training checks."""
model = YOLO("yolo11n.pt").model.to(f"cuda:{DEVICES[0]}")
assert check_amp(model)
@pytest.mark.slow
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch, simplify, nms",
[ # generate all combinations except for exclusion cases
(task, dynamic, int8, half, batch, simplify, nms)
for task, dynamic, int8, half, batch, simplify, nms in product(
TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
)
if not (
(int8 and half) or (task == "classify" and nms) or (task == "obb" and nms and (not TORCH_1_13 or IS_JETSON))
)
],
)
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
"""Test YOLO exports to ONNX format with various configurations and parameters."""
file = YOLO(TASK2MODEL[task]).export(
format="onnx",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
simplify=simplify,
nms=nms,
device=DEVICES[0],
)
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32, device=DEVICES[0]) # exported model inference
Path(file).unlink() # cleanup
@pytest.mark.slow
@pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch",
[ # generate all combinations but exclude those where both int8 and half are True
(task, dynamic, int8, half, batch)
# Note: tests reduced below pending compute availability expansion as GPU CI runner utilization is high
# for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
for task, dynamic, int8, half, batch in product(TASKS, [True], [True], [False], [2])
if not (int8 and half) # exclude cases where both int8 and half are True
],
)
def test_export_engine_matrix(task, dynamic, int8, half, batch):
"""Test YOLO model export to TensorRT format for various configurations and run inference."""
file = YOLO(TASK2MODEL[task]).export(
format="engine",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
data=TASK2DATA[task],
workspace=1, # reduce workspace GB for less resource utilization during testing
simplify=True,
device=DEVICES[0],
)
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32, device=DEVICES[0]) # exported model inference
Path(file).unlink() # cleanup
Path(file).with_suffix(".cache").unlink() if int8 else None # cleanup INT8 cache
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
def test_train():
"""Test model training on a minimal dataset using available CUDA devices."""
import os
device = tuple(DEVICES) if len(DEVICES) > 1 else DEVICES[0]
results = YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device) # requires imgsz>=64
# NVIDIA Jetson only has one GPU and therefore skipping checks
if not IS_JETSON:
visible = eval(os.environ["CUDA_VISIBLE_DEVICES"])
assert visible == device, f"Passed GPUs '{device}', but used GPUs '{visible}'"
assert (
(results is None) if len(DEVICES) > 1 else (results is not None)
) # DDP returns None, single-GPU returns metrics
@pytest.mark.slow
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
def test_predict_multiple_devices():
"""Validate model prediction consistency across CPU and CUDA devices."""
model = YOLO("yolo11n.pt")
# Test CPU
model = model.cpu()
assert str(model.device) == "cpu"
_ = model(SOURCE)
assert str(model.device) == "cpu"
# Test CUDA
cuda_device = f"cuda:{DEVICES[0]}"
model = model.to(cuda_device)
assert str(model.device) == cuda_device
_ = model(SOURCE)
assert str(model.device) == cuda_device
# Test CPU again
model = model.cpu()
assert str(model.device) == "cpu"
_ = model(SOURCE)
assert str(model.device) == "cpu"
# Test CUDA again
model = model.to(cuda_device)
assert str(model.device) == cuda_device
_ = model(SOURCE)
assert str(model.device) == cuda_device
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
def test_autobatch():
"""Check optimal batch size for YOLO model training using autobatch utility."""
from ultralytics.utils.autobatch import check_train_batch_size
check_train_batch_size(YOLO(MODEL).model.to(f"cuda:{DEVICES[0]}"), imgsz=128, amp=True)
@pytest.mark.slow
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
def test_utils_benchmarks():
"""Profile YOLO models for performance benchmarks."""
from ultralytics.utils.benchmarks import ProfileModels
# Pre-export a dynamic engine model to use dynamic inference
YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1, device=DEVICES[0])
ProfileModels(
[MODEL],
imgsz=32,
half=False,
min_time=1,
num_timed_runs=3,
num_warmup_runs=1,
device=DEVICES[0],
).run()
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
def test_predict_sam():
"""Test SAM model predictions using different prompts."""
from ultralytics import SAM
from ultralytics.models.sam import Predictor as SAMPredictor
model = SAM(WEIGHTS_DIR / "sam2.1_b.pt")
model.info()
# Run inference with various prompts
model(SOURCE, device=DEVICES[0])
model(SOURCE, bboxes=[439, 437, 524, 709], device=DEVICES[0])
model(ASSETS / "zidane.jpg", points=[900, 370], device=DEVICES[0])
model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=DEVICES[0])
model(ASSETS / "zidane.jpg", points=[[900, 370]], labels=[1], device=DEVICES[0])
model(ASSETS / "zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1], device=DEVICES[0])
model(ASSETS / "zidane.jpg", points=[[[900, 370], [1000, 100]]], labels=[[1, 1]], device=DEVICES[0])
# Test predictor
predictor = SAMPredictor(
overrides=dict(
conf=0.25,
task="segment",
mode="predict",
imgsz=1024,
model=WEIGHTS_DIR / "mobile_sam.pt",
device=DEVICES[0],
)
)
predictor.set_image(ASSETS / "zidane.jpg")
# predictor(bboxes=[439, 437, 524, 709])
# predictor(points=[900, 370], labels=[1])
predictor.reset_image()