189 lines
6.4 KiB
Python
189 lines
6.4 KiB
Python
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||
|
"""Monkey patches to update/extend functionality of existing functions."""
|
||
|
|
||
|
import time
|
||
|
from contextlib import contextmanager
|
||
|
from copy import copy
|
||
|
from pathlib import Path
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------
|
||
|
_imshow = cv2.imshow # copy to avoid recursion errors
|
||
|
|
||
|
|
||
|
def imread(filename: str, flags: int = cv2.IMREAD_COLOR) -> Optional[np.ndarray]:
|
||
|
"""
|
||
|
Read an image from a file with multilanguage filename support.
|
||
|
|
||
|
Args:
|
||
|
filename (str): Path to the file to read.
|
||
|
flags (int, optional): Flag that can take values of cv2.IMREAD_*. Controls how the image is read.
|
||
|
|
||
|
Returns:
|
||
|
(np.ndarray | None): The read image array, or None if reading fails.
|
||
|
|
||
|
Examples:
|
||
|
>>> img = imread("path/to/image.jpg")
|
||
|
>>> img = imread("path/to/image.jpg", cv2.IMREAD_GRAYSCALE)
|
||
|
"""
|
||
|
file_bytes = np.fromfile(filename, np.uint8)
|
||
|
if filename.endswith((".tiff", ".tif")):
|
||
|
success, frames = cv2.imdecodemulti(file_bytes, cv2.IMREAD_UNCHANGED)
|
||
|
if success:
|
||
|
# Handle RGB images in tif/tiff format
|
||
|
return frames[0] if len(frames) == 1 and frames[0].ndim == 3 else np.stack(frames, axis=2)
|
||
|
return None
|
||
|
else:
|
||
|
im = cv2.imdecode(file_bytes, flags)
|
||
|
return im[..., None] if im.ndim == 2 else im # Always ensure 3 dimensions
|
||
|
|
||
|
|
||
|
def imwrite(filename: str, img: np.ndarray, params: Optional[List[int]] = None) -> bool:
|
||
|
"""
|
||
|
Write an image to a file with multilanguage filename support.
|
||
|
|
||
|
Args:
|
||
|
filename (str): Path to the file to write.
|
||
|
img (np.ndarray): Image to write.
|
||
|
params (List[int], optional): Additional parameters for image encoding.
|
||
|
|
||
|
Returns:
|
||
|
(bool): True if the file was written successfully, False otherwise.
|
||
|
|
||
|
Examples:
|
||
|
>>> import numpy as np
|
||
|
>>> img = np.zeros((100, 100, 3), dtype=np.uint8) # Create a black image
|
||
|
>>> success = imwrite("output.jpg", img) # Write image to file
|
||
|
>>> print(success)
|
||
|
True
|
||
|
"""
|
||
|
try:
|
||
|
cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
|
||
|
return True
|
||
|
except Exception:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def imshow(winname: str, mat: np.ndarray) -> None:
|
||
|
"""
|
||
|
Display an image in the specified window with multilanguage window name support.
|
||
|
|
||
|
This function is a wrapper around OpenCV's imshow function that displays an image in a named window. It handles
|
||
|
multilanguage window names by encoding them properly for OpenCV compatibility.
|
||
|
|
||
|
Args:
|
||
|
winname (str): Name of the window where the image will be displayed. If a window with this name already
|
||
|
exists, the image will be displayed in that window.
|
||
|
mat (np.ndarray): Image to be shown. Should be a valid numpy array representing an image.
|
||
|
|
||
|
Examples:
|
||
|
>>> import numpy as np
|
||
|
>>> img = np.zeros((300, 300, 3), dtype=np.uint8) # Create a black image
|
||
|
>>> img[:100, :100] = [255, 0, 0] # Add a blue square
|
||
|
>>> imshow("Example Window", img) # Display the image
|
||
|
"""
|
||
|
_imshow(winname.encode("unicode_escape").decode(), mat)
|
||
|
|
||
|
|
||
|
# PyTorch functions ----------------------------------------------------------------------------------------------------
|
||
|
_torch_load = torch.load # copy to avoid recursion errors
|
||
|
_torch_save = torch.save
|
||
|
|
||
|
|
||
|
def torch_load(*args, **kwargs):
|
||
|
"""
|
||
|
Load a PyTorch model with updated arguments to avoid warnings.
|
||
|
|
||
|
This function wraps torch.load and adds the 'weights_only' argument for PyTorch 1.13.0+ to prevent warnings.
|
||
|
|
||
|
Args:
|
||
|
*args (Any): Variable length argument list to pass to torch.load.
|
||
|
**kwargs (Any): Arbitrary keyword arguments to pass to torch.load.
|
||
|
|
||
|
Returns:
|
||
|
(Any): The loaded PyTorch object.
|
||
|
|
||
|
Notes:
|
||
|
For PyTorch versions 2.0 and above, this function automatically sets 'weights_only=False'
|
||
|
if the argument is not provided, to avoid deprecation warnings.
|
||
|
"""
|
||
|
from ultralytics.utils.torch_utils import TORCH_1_13
|
||
|
|
||
|
if TORCH_1_13 and "weights_only" not in kwargs:
|
||
|
kwargs["weights_only"] = False
|
||
|
|
||
|
return _torch_load(*args, **kwargs)
|
||
|
|
||
|
|
||
|
def torch_save(*args, **kwargs):
|
||
|
"""
|
||
|
Save PyTorch objects with retry mechanism for robustness.
|
||
|
|
||
|
This function wraps torch.save with 3 retries and exponential backoff in case of save failures, which can occur
|
||
|
due to device flushing delays or antivirus scanning.
|
||
|
|
||
|
Args:
|
||
|
*args (Any): Positional arguments to pass to torch.save.
|
||
|
**kwargs (Any): Keyword arguments to pass to torch.save.
|
||
|
|
||
|
Examples:
|
||
|
>>> model = torch.nn.Linear(10, 1)
|
||
|
>>> torch_save(model.state_dict(), "model.pt")
|
||
|
"""
|
||
|
for i in range(4): # 3 retries
|
||
|
try:
|
||
|
return _torch_save(*args, **kwargs)
|
||
|
except RuntimeError as e: # Unable to save, possibly waiting for device to flush or antivirus scan
|
||
|
if i == 3:
|
||
|
raise e
|
||
|
time.sleep((2**i) / 2) # Exponential backoff: 0.5s, 1.0s, 2.0s
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def arange_patch(args):
|
||
|
"""
|
||
|
Workaround for ONNX torch.arange incompatibility with FP16.
|
||
|
|
||
|
https://github.com/pytorch/pytorch/issues/148041.
|
||
|
"""
|
||
|
if args.dynamic and args.half and args.format == "onnx":
|
||
|
func = torch.arange
|
||
|
|
||
|
def arange(*args, dtype=None, **kwargs):
|
||
|
"""Return a 1-D tensor of size with values from the interval and common difference."""
|
||
|
return func(*args, **kwargs).to(dtype) # cast to dtype instead of passing dtype
|
||
|
|
||
|
torch.arange = arange # patch
|
||
|
yield
|
||
|
torch.arange = func # unpatch
|
||
|
else:
|
||
|
yield
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def override_configs(args, overrides: Optional[Dict[str, Any]] = None):
|
||
|
"""
|
||
|
Context manager to temporarily override configurations in args.
|
||
|
|
||
|
Args:
|
||
|
args (IterableSimpleNamespace): Original configuration arguments.
|
||
|
overrides (Dict[str, Any]): Dictionary of overrides to apply.
|
||
|
|
||
|
Yields:
|
||
|
(IterableSimpleNamespace): Configuration arguments with overrides applied.
|
||
|
"""
|
||
|
if overrides:
|
||
|
original_args = copy(args)
|
||
|
for key, value in overrides.items():
|
||
|
setattr(args, key, value)
|
||
|
try:
|
||
|
yield args
|
||
|
finally:
|
||
|
args.__dict__.update(original_args.__dict__)
|
||
|
else:
|
||
|
yield args
|