287 lines
12 KiB
Python
287 lines
12 KiB
Python
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||
|
|
||
|
import argparse
|
||
|
from typing import List, Tuple
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import onnxruntime as ort
|
||
|
import torch
|
||
|
|
||
|
from ultralytics.utils import ASSETS, YAML
|
||
|
from ultralytics.utils.checks import check_requirements, check_yaml
|
||
|
|
||
|
|
||
|
class YOLOv8:
|
||
|
"""
|
||
|
YOLOv8 object detection model class for handling ONNX inference and visualization.
|
||
|
|
||
|
This class provides functionality to load a YOLOv8 ONNX model, perform inference on images,
|
||
|
and visualize the detection results with bounding boxes and labels.
|
||
|
|
||
|
Attributes:
|
||
|
onnx_model (str): Path to the ONNX model file.
|
||
|
input_image (str): Path to the input image file.
|
||
|
confidence_thres (float): Confidence threshold for filtering detections.
|
||
|
iou_thres (float): IoU threshold for non-maximum suppression.
|
||
|
classes (List[str]): List of class names from the COCO dataset.
|
||
|
color_palette (np.ndarray): Random color palette for visualizing different classes.
|
||
|
input_width (int): Width dimension of the model input.
|
||
|
input_height (int): Height dimension of the model input.
|
||
|
img (np.ndarray): The loaded input image.
|
||
|
img_height (int): Height of the input image.
|
||
|
img_width (int): Width of the input image.
|
||
|
|
||
|
Methods:
|
||
|
letterbox: Resize and reshape images while maintaining aspect ratio by adding padding.
|
||
|
draw_detections: Draw bounding boxes and labels on the input image based on detected objects.
|
||
|
preprocess: Preprocess the input image before performing inference.
|
||
|
postprocess: Perform post-processing on the model's output to extract and visualize detections.
|
||
|
main: Perform inference using an ONNX model and return the output image with drawn detections.
|
||
|
|
||
|
Examples:
|
||
|
Initialize YOLOv8 detector and run inference
|
||
|
>>> detector = YOLOv8("yolov8n.onnx", "image.jpg", 0.5, 0.5)
|
||
|
>>> output_image = detector.main()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, onnx_model: str, input_image: str, confidence_thres: float, iou_thres: float):
|
||
|
"""
|
||
|
Initialize an instance of the YOLOv8 class.
|
||
|
|
||
|
Args:
|
||
|
onnx_model (str): Path to the ONNX model.
|
||
|
input_image (str): Path to the input image.
|
||
|
confidence_thres (float): Confidence threshold for filtering detections.
|
||
|
iou_thres (float): IoU threshold for non-maximum suppression.
|
||
|
"""
|
||
|
self.onnx_model = onnx_model
|
||
|
self.input_image = input_image
|
||
|
self.confidence_thres = confidence_thres
|
||
|
self.iou_thres = iou_thres
|
||
|
|
||
|
# Load the class names from the COCO dataset
|
||
|
self.classes = YAML.load(check_yaml("coco8.yaml"))["names"]
|
||
|
|
||
|
# Generate a color palette for the classes
|
||
|
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
|
||
|
|
||
|
def letterbox(self, img: np.ndarray, new_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.ndarray, Tuple[int, int]]:
|
||
|
"""
|
||
|
Resize and reshape images while maintaining aspect ratio by adding padding.
|
||
|
|
||
|
Args:
|
||
|
img (np.ndarray): Input image to be resized.
|
||
|
new_shape (Tuple[int, int]): Target shape (height, width) for the image.
|
||
|
|
||
|
Returns:
|
||
|
img (np.ndarray): Resized and padded image.
|
||
|
pad (Tuple[int, int]): Padding values (top, left) applied to the image.
|
||
|
"""
|
||
|
shape = img.shape[:2] # current shape [height, width]
|
||
|
|
||
|
# Scale ratio (new / old)
|
||
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||
|
|
||
|
# Compute padding
|
||
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||
|
dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
|
||
|
|
||
|
if shape[::-1] != new_unpad: # resize
|
||
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
|
||
|
|
||
|
return img, (top, left)
|
||
|
|
||
|
def draw_detections(self, img: np.ndarray, box: List[float], score: float, class_id: int) -> None:
|
||
|
"""Draw bounding boxes and labels on the input image based on the detected objects."""
|
||
|
# Extract the coordinates of the bounding box
|
||
|
x1, y1, w, h = box
|
||
|
|
||
|
# Retrieve the color for the class ID
|
||
|
color = self.color_palette[class_id]
|
||
|
|
||
|
# Draw the bounding box on the image
|
||
|
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
|
||
|
|
||
|
# Create the label text with class name and score
|
||
|
label = f"{self.classes[class_id]}: {score:.2f}"
|
||
|
|
||
|
# Calculate the dimensions of the label text
|
||
|
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||
|
|
||
|
# Calculate the position of the label text
|
||
|
label_x = x1
|
||
|
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
|
||
|
|
||
|
# Draw a filled rectangle as the background for the label text
|
||
|
cv2.rectangle(
|
||
|
img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED
|
||
|
)
|
||
|
|
||
|
# Draw the label text on the image
|
||
|
cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
|
||
|
|
||
|
def preprocess(self) -> Tuple[np.ndarray, Tuple[int, int]]:
|
||
|
"""
|
||
|
Preprocess the input image before performing inference.
|
||
|
|
||
|
This method reads the input image, converts its color space, applies letterboxing to maintain aspect ratio,
|
||
|
normalizes pixel values, and prepares the image data for model input.
|
||
|
|
||
|
Returns:
|
||
|
image_data (np.ndarray): Preprocessed image data ready for inference with shape (1, 3, height, width).
|
||
|
pad (Tuple[int, int]): Padding values (top, left) applied during letterboxing.
|
||
|
"""
|
||
|
# Read the input image using OpenCV
|
||
|
self.img = cv2.imread(self.input_image)
|
||
|
|
||
|
# Get the height and width of the input image
|
||
|
self.img_height, self.img_width = self.img.shape[:2]
|
||
|
|
||
|
# Convert the image color space from BGR to RGB
|
||
|
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
|
||
|
|
||
|
img, pad = self.letterbox(img, (self.input_width, self.input_height))
|
||
|
|
||
|
# Normalize the image data by dividing it by 255.0
|
||
|
image_data = np.array(img) / 255.0
|
||
|
|
||
|
# Transpose the image to have the channel dimension as the first dimension
|
||
|
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
|
||
|
|
||
|
# Expand the dimensions of the image data to match the expected input shape
|
||
|
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
|
||
|
|
||
|
# Return the preprocessed image data
|
||
|
return image_data, pad
|
||
|
|
||
|
def postprocess(self, input_image: np.ndarray, output: List[np.ndarray], pad: Tuple[int, int]) -> np.ndarray:
|
||
|
"""
|
||
|
Perform post-processing on the model's output to extract and visualize detections.
|
||
|
|
||
|
This method processes the raw model output to extract bounding boxes, scores, and class IDs.
|
||
|
It applies non-maximum suppression to filter overlapping detections and draws the results on the input image.
|
||
|
|
||
|
Args:
|
||
|
input_image (np.ndarray): The input image.
|
||
|
output (List[np.ndarray]): The output arrays from the model.
|
||
|
pad (Tuple[int, int]): Padding values (top, left) used during letterboxing.
|
||
|
|
||
|
Returns:
|
||
|
(np.ndarray): The input image with detections drawn on it.
|
||
|
"""
|
||
|
# Transpose and squeeze the output to match the expected shape
|
||
|
outputs = np.transpose(np.squeeze(output[0]))
|
||
|
|
||
|
# Get the number of rows in the outputs array
|
||
|
rows = outputs.shape[0]
|
||
|
|
||
|
# Lists to store the bounding boxes, scores, and class IDs of the detections
|
||
|
boxes = []
|
||
|
scores = []
|
||
|
class_ids = []
|
||
|
|
||
|
# Calculate the scaling factors for the bounding box coordinates
|
||
|
gain = min(self.input_height / self.img_height, self.input_width / self.img_width)
|
||
|
outputs[:, 0] -= pad[1]
|
||
|
outputs[:, 1] -= pad[0]
|
||
|
|
||
|
# Iterate over each row in the outputs array
|
||
|
for i in range(rows):
|
||
|
# Extract the class scores from the current row
|
||
|
classes_scores = outputs[i][4:]
|
||
|
|
||
|
# Find the maximum score among the class scores
|
||
|
max_score = np.amax(classes_scores)
|
||
|
|
||
|
# If the maximum score is above the confidence threshold
|
||
|
if max_score >= self.confidence_thres:
|
||
|
# Get the class ID with the highest score
|
||
|
class_id = np.argmax(classes_scores)
|
||
|
|
||
|
# Extract the bounding box coordinates from the current row
|
||
|
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
|
||
|
|
||
|
# Calculate the scaled coordinates of the bounding box
|
||
|
left = int((x - w / 2) / gain)
|
||
|
top = int((y - h / 2) / gain)
|
||
|
width = int(w / gain)
|
||
|
height = int(h / gain)
|
||
|
|
||
|
# Add the class ID, score, and box coordinates to the respective lists
|
||
|
class_ids.append(class_id)
|
||
|
scores.append(max_score)
|
||
|
boxes.append([left, top, width, height])
|
||
|
|
||
|
# Apply non-maximum suppression to filter out overlapping bounding boxes
|
||
|
indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
|
||
|
|
||
|
# Iterate over the selected indices after non-maximum suppression
|
||
|
for i in indices:
|
||
|
# Get the box, score, and class ID corresponding to the index
|
||
|
box = boxes[i]
|
||
|
score = scores[i]
|
||
|
class_id = class_ids[i]
|
||
|
|
||
|
# Draw the detection on the input image
|
||
|
self.draw_detections(input_image, box, score, class_id)
|
||
|
|
||
|
# Return the modified input image
|
||
|
return input_image
|
||
|
|
||
|
def main(self) -> np.ndarray:
|
||
|
"""
|
||
|
Perform inference using an ONNX model and return the output image with drawn detections.
|
||
|
|
||
|
Returns:
|
||
|
(np.ndarray): The output image with drawn detections.
|
||
|
"""
|
||
|
# Create an inference session using the ONNX model and specify execution providers
|
||
|
session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
|
||
|
|
||
|
# Get the model inputs
|
||
|
model_inputs = session.get_inputs()
|
||
|
|
||
|
# Store the shape of the input for later use
|
||
|
input_shape = model_inputs[0].shape
|
||
|
self.input_width = input_shape[2]
|
||
|
self.input_height = input_shape[3]
|
||
|
|
||
|
# Preprocess the image data
|
||
|
img_data, pad = self.preprocess()
|
||
|
|
||
|
# Run inference using the preprocessed image data
|
||
|
outputs = session.run(None, {model_inputs[0].name: img_data})
|
||
|
|
||
|
# Perform post-processing on the outputs to obtain output image
|
||
|
return self.postprocess(self.img, outputs, pad)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# Create an argument parser to handle command-line arguments
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.")
|
||
|
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
|
||
|
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
|
||
|
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
# Check the requirements and select the appropriate backend (CPU or GPU)
|
||
|
check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
|
||
|
|
||
|
# Create an instance of the YOLOv8 class with the specified arguments
|
||
|
detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres)
|
||
|
|
||
|
# Perform object detection and obtain the output image
|
||
|
output_image = detection.main()
|
||
|
|
||
|
# Display the output image in a window
|
||
|
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
|
||
|
cv2.imshow("Output", output_image)
|
||
|
|
||
|
# Wait for a key press to exit
|
||
|
cv2.waitKey(0)
|