image_to_pixle_params_yoloSAM/ultralytics-main/examples/YOLOv8-SAHI-Inference-Video/yolov8_sahi.py

148 lines
5.9 KiB
Python
Raw Normal View History

2025-07-14 17:36:53 +08:00
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import argparse
import cv2
from sahi import AutoDetectionModel
from sahi.predict import get_sliced_prediction
from sahi.utils.ultralytics import download_model_weights
from ultralytics.utils.files import increment_path
class SAHIInference:
"""
Runs Ultralytics YOLO11 and SAHI for object detection on video with options to view, save, and track results.
This class integrates SAHI (Slicing Aided Hyper Inference) with YOLO11 models to perform efficient object detection
on large images by slicing them into smaller pieces, running inference on each slice, and then merging the results.
Attributes:
detection_model (AutoDetectionModel): The loaded YOLO11 model wrapped with SAHI functionality.
Methods:
load_model: Load a YOLO11 model with specified weights for object detection using SAHI.
inference: Run object detection on a video using YOLO11 and SAHI.
parse_opt: Parse command line arguments for the inference process.
Examples:
Initialize and run SAHI inference on a video
>>> sahi_inference = SAHIInference()
>>> sahi_inference.inference(weights="yolo11n.pt", source="video.mp4", view_img=True)
"""
def __init__(self):
"""Initialize the SAHIInference class for performing sliced inference using SAHI with YOLO11 models."""
self.detection_model = None
def load_model(self, weights: str, device: str) -> None:
"""
Load a YOLO11 model with specified weights for object detection using SAHI.
Args:
weights (str): Path to the model weights file.
device (str): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'.
"""
from ultralytics.utils.torch_utils import select_device
yolo11_model_path = f"models/{weights}"
download_model_weights(yolo11_model_path) # Download model if not present
self.detection_model = AutoDetectionModel.from_pretrained(
model_type="ultralytics", model_path=yolo11_model_path, device=select_device(device)
)
def inference(
self,
weights: str = "yolo11n.pt",
source: str = "test.mp4",
view_img: bool = False,
save_img: bool = False,
exist_ok: bool = False,
device: str = "",
hide_conf: bool = False,
slice_width: int = 512,
slice_height: int = 512,
) -> None:
"""
Run object detection on a video using YOLO11 and SAHI.
The function processes each frame of the video, applies sliced inference using SAHI,
and optionally displays and/or saves the results with bounding boxes and labels.
Args:
weights (str): Model weights' path.
source (str): Video file path.
view_img (bool): Whether to display results in a window.
save_img (bool): Whether to save results to a video file.
exist_ok (bool): Whether to overwrite existing output files.
device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'.
hide_conf (bool, optional): Flag to show or hide confidences in the output.
slice_width (int, optional): Slice width for inference.
slice_height (int, optional): Slice height for inference.
"""
# Video setup
cap = cv2.VideoCapture(source)
assert cap.isOpened(), "Error reading video file"
# Output setup
save_dir = increment_path("runs/detect/predict", exist_ok)
save_dir.mkdir(parents=True, exist_ok=True)
# Load model
self.load_model(weights, device)
idx = 0 # Index for image frame writing
while cap.isOpened():
success, frame = cap.read()
if not success:
break
# Perform sliced prediction using SAHI
results = get_sliced_prediction(
frame[..., ::-1], # Convert BGR to RGB
self.detection_model,
slice_height=slice_height,
slice_width=slice_width,
)
# Display results if requested
if view_img:
cv2.imshow("Ultralytics YOLO Inference", frame)
# Save results if requested
if save_img:
idx += 1
results.export_visuals(export_dir=save_dir, file_name=f"img_{idx}", hide_conf=hide_conf)
# Break loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Clean up resources
cap.release()
cv2.destroyAllWindows()
@staticmethod
def parse_opt() -> argparse.Namespace:
"""
Parse command line arguments for the inference process.
Returns:
(argparse.Namespace): Parsed command line arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default="yolo11n.pt", help="initial weights path")
parser.add_argument("--source", type=str, required=True, help="video file path")
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument("--save-img", action="store_true", help="save results")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--hide-conf", default=False, action="store_true", help="display or hide confidences")
parser.add_argument("--slice-width", default=512, type=int, help="Slice width for inference")
parser.add_argument("--slice-height", default=512, type=int, help="Slice height for inference")
return parser.parse_args()
if __name__ == "__main__":
inference = SAHIInference()
inference.inference(**vars(inference.parse_opt()))