image_to_pixle_params_yoloSAM/ultralytics-main/examples/YOLOv8-Segmentation-ONNXRun.../main.py

190 lines
8.1 KiB
Python
Raw Normal View History

2025-07-14 17:36:53 +08:00
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import argparse
from typing import List, Tuple, Union
import cv2
import numpy as np
import onnxruntime as ort
import torch
import ultralytics.utils.ops as ops
from ultralytics.engine.results import Results
from ultralytics.utils import ASSETS, YAML
from ultralytics.utils.checks import check_yaml
class YOLOv8Seg:
"""
YOLOv8 segmentation model for performing instance segmentation using ONNX Runtime.
This class implements a YOLOv8 instance segmentation model using ONNX Runtime for inference. It handles
preprocessing of input images, running inference with the ONNX model, and postprocessing the results to
generate bounding boxes and segmentation masks.
Attributes:
session (ort.InferenceSession): ONNX Runtime inference session for model execution.
imgsz (Tuple[int, int]): Input image size as (height, width) for the model.
classes (dict): Dictionary mapping class indices to class names from the dataset.
conf (float): Confidence threshold for filtering detections.
iou (float): IoU threshold used by non-maximum suppression.
Methods:
letterbox: Resize and pad image while maintaining aspect ratio.
preprocess: Preprocess the input image before feeding it into the model.
postprocess: Post-process model predictions to extract meaningful results.
process_mask: Process prototype masks with predicted mask coefficients to generate instance segmentation masks.
Examples:
>>> model = YOLOv8Seg("yolov8n-seg.onnx", conf=0.25, iou=0.7)
>>> img = cv2.imread("image.jpg")
>>> results = model(img)
>>> cv2.imshow("Segmentation", results[0].plot())
"""
def __init__(self, onnx_model: str, conf: float = 0.25, iou: float = 0.7, imgsz: Union[int, Tuple[int, int]] = 640):
"""
Initialize the instance segmentation model using an ONNX model.
Args:
onnx_model (str): Path to the ONNX model file.
conf (float, optional): Confidence threshold for filtering detections.
iou (float, optional): IoU threshold for non-maximum suppression.
imgsz (int | Tuple[int, int], optional): Input image size of the model. Can be an integer for square
input or a tuple for rectangular input.
"""
self.session = ort.InferenceSession(
onnx_model,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
if torch.cuda.is_available()
else ["CPUExecutionProvider"],
)
self.imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz
self.classes = YAML.load(check_yaml("coco8.yaml"))["names"]
self.conf = conf
self.iou = iou
def __call__(self, img: np.ndarray) -> List[Results]:
"""
Run inference on the input image using the ONNX model.
Args:
img (np.ndarray): The original input image in BGR format.
Returns:
(List[Results]): Processed detection results after post-processing, containing bounding boxes and
segmentation masks.
"""
prep_img = self.preprocess(img, self.imgsz)
outs = self.session.run(None, {self.session.get_inputs()[0].name: prep_img})
return self.postprocess(img, prep_img, outs)
def letterbox(self, img: np.ndarray, new_shape: Tuple[int, int] = (640, 640)) -> np.ndarray:
"""
Resize and pad image while maintaining aspect ratio.
Args:
img (np.ndarray): Input image in BGR format.
new_shape (Tuple[int, int], optional): Target shape as (height, width).
Returns:
(np.ndarray): Resized and padded image.
"""
shape = img.shape[:2] # current shape [height, width]
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
return img
def preprocess(self, img: np.ndarray, new_shape: Tuple[int, int]) -> np.ndarray:
"""
Preprocess the input image before feeding it into the model.
Args:
img (np.ndarray): The input image in BGR format.
new_shape (Tuple[int, int]): The target shape for resizing as (height, width).
Returns:
(np.ndarray): Preprocessed image ready for model inference, with shape (1, 3, height, width) and
normalized to [0, 1].
"""
img = self.letterbox(img, new_shape)
img = img[..., ::-1].transpose([2, 0, 1])[None] # BGR to RGB, BHWC to BCHW
img = np.ascontiguousarray(img)
img = img.astype(np.float32) / 255 # Normalize to [0, 1]
return img
def postprocess(self, img: np.ndarray, prep_img: np.ndarray, outs: List) -> List[Results]:
"""
Post-process model predictions to extract meaningful results.
Args:
img (np.ndarray): The original input image.
prep_img (np.ndarray): The preprocessed image used for inference.
outs (List): Model outputs containing predictions and prototype masks.
Returns:
(List[Results]): Processed detection results containing bounding boxes and segmentation masks.
"""
preds, protos = [torch.from_numpy(p) for p in outs]
preds = ops.non_max_suppression(preds, self.conf, self.iou, nc=len(self.classes))
results = []
for i, pred in enumerate(preds):
pred[:, :4] = ops.scale_boxes(prep_img.shape[2:], pred[:, :4], img.shape)
masks = self.process_mask(protos[i], pred[:, 6:], pred[:, :4], img.shape[:2])
results.append(Results(img, path="", names=self.classes, boxes=pred[:, :6], masks=masks))
return results
def process_mask(
self, protos: torch.Tensor, masks_in: torch.Tensor, bboxes: torch.Tensor, shape: Tuple[int, int]
) -> torch.Tensor:
"""
Process prototype masks with predicted mask coefficients to generate instance segmentation masks.
Args:
protos (torch.Tensor): Prototype masks with shape (mask_dim, mask_h, mask_w).
masks_in (torch.Tensor): Predicted mask coefficients with shape (N, mask_dim), where N is number of
detections.
bboxes (torch.Tensor): Bounding boxes with shape (N, 4), where N is number of detections.
shape (Tuple[int, int]): The size of the input image as (height, width).
Returns:
(torch.Tensor): Binary segmentation masks with shape (N, height, width).
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).view(-1, mh, mw) # Matrix multiplication
masks = ops.scale_masks(masks[None], shape)[0] # Scale masks to original image size
masks = ops.crop_mask(masks, bboxes) # Crop masks to bounding boxes
return masks.gt_(0.0) # Convert to binary masks
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="Path to ONNX model")
parser.add_argument("--source", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
parser.add_argument("--iou", type=float, default=0.7, help="NMS IoU threshold")
args = parser.parse_args()
model = YOLOv8Seg(args.model, args.conf, args.iou)
img = cv2.imread(args.source)
results = model(img)
cv2.imshow("Segmented Image", results[0].plot())
cv2.waitKey(0)
cv2.destroyAllWindows()