image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/data/annotator.py

68 lines
3.0 KiB
Python
Raw Normal View History

2025-07-14 17:36:53 +08:00
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from pathlib import Path
from typing import List, Optional, Union
from ultralytics import SAM, YOLO
def auto_annotate(
data: Union[str, Path],
det_model: str = "yolo11x.pt",
sam_model: str = "sam_b.pt",
device: str = "",
conf: float = 0.25,
iou: float = 0.45,
imgsz: int = 640,
max_det: int = 300,
classes: Optional[List[int]] = None,
output_dir: Optional[Union[str, Path]] = None,
) -> None:
"""
Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
This function processes images in a specified directory, detects objects using a YOLO model, and then generates
segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format.
Args:
data (str | Path): Path to a folder containing images to be annotated.
det_model (str): Path or name of the pre-trained YOLO detection model.
sam_model (str): Path or name of the pre-trained SAM segmentation model.
device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0'). Empty string for auto-selection.
conf (float): Confidence threshold for detection model.
iou (float): IoU threshold for filtering overlapping boxes in detection results.
imgsz (int): Input image resize dimension.
max_det (int): Maximum number of detections per image.
classes (List[int], optional): Filter predictions to specified class IDs, returning only relevant detections.
output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default
directory based on the input data path.
Examples:
>>> from ultralytics.data.annotator import auto_annotate
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
"""
det_model = YOLO(det_model)
sam_model = SAM(sam_model)
data = Path(data)
if not output_dir:
output_dir = data.parent / f"{data.stem}_auto_annotate_labels"
Path(output_dir).mkdir(exist_ok=True, parents=True)
det_results = det_model(
data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes
)
for result in det_results:
class_ids = result.boxes.cls.int().tolist() # Extract class IDs from detection results
if class_ids:
boxes = result.boxes.xyxy # Boxes object for bbox outputs
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
segments = sam_results[0].masks.xyn
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w", encoding="utf-8") as f:
for i, s in enumerate(segments):
if s.any():
segment = map(str, s.reshape(-1).tolist())
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")