68 lines
3.0 KiB
Python
68 lines
3.0 KiB
Python
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||
|
|
||
|
from pathlib import Path
|
||
|
from typing import List, Optional, Union
|
||
|
|
||
|
from ultralytics import SAM, YOLO
|
||
|
|
||
|
|
||
|
def auto_annotate(
|
||
|
data: Union[str, Path],
|
||
|
det_model: str = "yolo11x.pt",
|
||
|
sam_model: str = "sam_b.pt",
|
||
|
device: str = "",
|
||
|
conf: float = 0.25,
|
||
|
iou: float = 0.45,
|
||
|
imgsz: int = 640,
|
||
|
max_det: int = 300,
|
||
|
classes: Optional[List[int]] = None,
|
||
|
output_dir: Optional[Union[str, Path]] = None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
|
||
|
|
||
|
This function processes images in a specified directory, detects objects using a YOLO model, and then generates
|
||
|
segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format.
|
||
|
|
||
|
Args:
|
||
|
data (str | Path): Path to a folder containing images to be annotated.
|
||
|
det_model (str): Path or name of the pre-trained YOLO detection model.
|
||
|
sam_model (str): Path or name of the pre-trained SAM segmentation model.
|
||
|
device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0'). Empty string for auto-selection.
|
||
|
conf (float): Confidence threshold for detection model.
|
||
|
iou (float): IoU threshold for filtering overlapping boxes in detection results.
|
||
|
imgsz (int): Input image resize dimension.
|
||
|
max_det (int): Maximum number of detections per image.
|
||
|
classes (List[int], optional): Filter predictions to specified class IDs, returning only relevant detections.
|
||
|
output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default
|
||
|
directory based on the input data path.
|
||
|
|
||
|
Examples:
|
||
|
>>> from ultralytics.data.annotator import auto_annotate
|
||
|
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
|
||
|
"""
|
||
|
det_model = YOLO(det_model)
|
||
|
sam_model = SAM(sam_model)
|
||
|
|
||
|
data = Path(data)
|
||
|
if not output_dir:
|
||
|
output_dir = data.parent / f"{data.stem}_auto_annotate_labels"
|
||
|
Path(output_dir).mkdir(exist_ok=True, parents=True)
|
||
|
|
||
|
det_results = det_model(
|
||
|
data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes
|
||
|
)
|
||
|
|
||
|
for result in det_results:
|
||
|
class_ids = result.boxes.cls.int().tolist() # Extract class IDs from detection results
|
||
|
if class_ids:
|
||
|
boxes = result.boxes.xyxy # Boxes object for bbox outputs
|
||
|
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
|
||
|
segments = sam_results[0].masks.xyn
|
||
|
|
||
|
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w", encoding="utf-8") as f:
|
||
|
for i, s in enumerate(segments):
|
||
|
if s.any():
|
||
|
segment = map(str, s.reshape(-1).tolist())
|
||
|
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")
|