image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/solutions/config.py

107 lines
5.3 KiB
Python
Raw Normal View History

2025-07-14 17:36:53 +08:00
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from dataclasses import dataclass, field
from typing import Any, List, Optional, Tuple
import cv2
@dataclass
class SolutionConfig:
"""
Manages configuration parameters for Ultralytics Vision AI solutions.
The SolutionConfig class serves as a centralized configuration container for all the
Ultralytics solution modules: https://docs.ultralytics.com/solutions/#solutions.
It leverages Python `dataclass` for clear, type-safe, and maintainable parameter definitions.
Attributes:
source (str, optional): Path to the input source (video, RTSP, etc.). Only usable with Solutions CLI.
model (str, optional): Path to the Ultralytics YOLO model to be used for inference.
classes (List[int], optional): List of class indices to filter detections.
show_conf (bool): Whether to show confidence scores on the visual output.
show_labels (bool): Whether to display class labels on visual output.
region (List[Tuple[int, int]], optional): Polygonal region or line for object counting.
colormap (int, optional): OpenCV colormap constant for visual overlays (e.g., cv2.COLORMAP_JET).
show_in (bool): Whether to display count number for objects entering the region.
show_out (bool): Whether to display count number for objects leaving the region.
up_angle (float): Upper angle threshold used in pose-based workouts monitoring.
down_angle (int): Lower angle threshold used in pose-based workouts monitoring.
kpts (List[int]): Keypoint indices to monitor, e.g., for pose analytics.
analytics_type (str): Type of analytics to perform ("line", "area", "bar", "pie", etc.).
figsize (Tuple[int, int], optional): Size of the matplotlib figure used for analytical plots (width, height).
blur_ratio (float): Ratio used to blur objects in the video frames (0.0 to 1.0).
vision_point (Tuple[int, int]): Reference point for directional tracking or perspective drawing.
crop_dir (str): Directory path to save cropped detection images.
json_file (str): Path to a JSON file containing data for parking areas.
line_width (int): Width for visual display i.e. bounding boxes, keypoints, counts.
records (int): Number of detection records to send email alerts.
fps (float): Frame rate (Frames Per Second) for speed estimation calculation.
max_hist (int): Maximum number of historical points or states stored per tracked object for speed estimation.
meter_per_pixel (float): Scale for real-world measurement, used in speed or distance calculations.
max_speed (int): Maximum speed limit (e.g., km/h or mph) used in visual alerts or constraints.
show (bool): Whether to display the visual output on screen.
iou (float): Intersection-over-Union threshold for detection filtering.
conf (float): Confidence threshold for keeping predictions.
device (str, optional): Device to run inference on (e.g., 'cpu', '0' for CUDA GPU).
max_det (int): Maximum number of detections allowed per video frame.
half (bool): Whether to use FP16 precision (requires a supported CUDA device).
tracker (str): Path to tracking configuration YAML file (e.g., 'botsort.yaml').
verbose (bool): Enable verbose logging output for debugging or diagnostics.
data (str): Path to image directory used for similarity search.
Methods:
update: Update the configuration with user-defined keyword arguments and raise error on invalid keys.
Examples:
>>> from ultralytics.solutions.config import SolutionConfig
>>> cfg = SolutionConfig(model="yolo11n.pt", region=[(0, 0), (100, 0), (100, 100), (0, 100)])
>>> cfg.update(show=False, conf=0.3)
>>> print(cfg.model)
"""
source: Optional[str] = None
model: Optional[str] = None
classes: Optional[List[int]] = None
show_conf: bool = True
show_labels: bool = True
region: Optional[List[Tuple[int, int]]] = None
colormap: Optional[int] = cv2.COLORMAP_DEEPGREEN
show_in: bool = True
show_out: bool = True
up_angle: float = 145.0
down_angle: int = 90
kpts: List[int] = field(default_factory=lambda: [6, 8, 10])
analytics_type: str = "line"
figsize: Optional[Tuple[int, int]] = (12.8, 7.2)
blur_ratio: float = 0.5
vision_point: Tuple[int, int] = (20, 20)
crop_dir: str = "cropped-detections"
json_file: str = None
line_width: int = 2
records: int = 5
fps: float = 30.0
max_hist: int = 5
meter_per_pixel: float = 0.05
max_speed: int = 120
show: bool = False
iou: float = 0.7
conf: float = 0.25
device: Optional[str] = None
max_det: int = 300
half: bool = False
tracker: str = "botsort.yaml"
verbose: bool = True
data: str = "images"
def update(self, **kwargs: Any):
"""Update configuration parameters with new values provided as keyword arguments."""
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
else:
url = "https://docs.ultralytics.com/solutions/#solutions-arguments"
raise ValueError(f"{key} is not a valid solution argument, see {url}")
return self