93 lines
3.4 KiB
Python
93 lines
3.4 KiB
Python
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||
|
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
from typing import Any
|
||
|
|
||
|
from ultralytics.solutions.solutions import BaseSolution, SolutionResults
|
||
|
from ultralytics.utils.plotting import save_one_box
|
||
|
|
||
|
|
||
|
class ObjectCropper(BaseSolution):
|
||
|
"""
|
||
|
A class to manage the cropping of detected objects in a real-time video stream or images.
|
||
|
|
||
|
This class extends the BaseSolution class and provides functionality for cropping objects based on detected bounding
|
||
|
boxes. The cropped images are saved to a specified directory for further analysis or usage.
|
||
|
|
||
|
Attributes:
|
||
|
crop_dir (str): Directory where cropped object images are stored.
|
||
|
crop_idx (int): Counter for the total number of cropped objects.
|
||
|
iou (float): IoU (Intersection over Union) threshold for non-maximum suppression.
|
||
|
conf (float): Confidence threshold for filtering detections.
|
||
|
|
||
|
Methods:
|
||
|
process: Crop detected objects from the input image and save them to the output directory.
|
||
|
|
||
|
Examples:
|
||
|
>>> cropper = ObjectCropper()
|
||
|
>>> frame = cv2.imread("frame.jpg")
|
||
|
>>> processed_results = cropper.process(frame)
|
||
|
>>> print(f"Total cropped objects: {cropper.crop_idx}")
|
||
|
"""
|
||
|
|
||
|
def __init__(self, **kwargs: Any) -> None:
|
||
|
"""
|
||
|
Initialize the ObjectCropper class for cropping objects from detected bounding boxes.
|
||
|
|
||
|
Args:
|
||
|
**kwargs (Any): Keyword arguments passed to the parent class and used for configuration.
|
||
|
crop_dir (str): Path to the directory for saving cropped object images.
|
||
|
"""
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.crop_dir = self.CFG["crop_dir"] # Directory for storing cropped detections
|
||
|
if not os.path.exists(self.crop_dir):
|
||
|
os.mkdir(self.crop_dir) # Create directory if it does not exist
|
||
|
if self.CFG["show"]:
|
||
|
self.LOGGER.warning(
|
||
|
f"show=True disabled for crop solution, results will be saved in the directory named: {self.crop_dir}"
|
||
|
)
|
||
|
self.crop_idx = 0 # Initialize counter for total cropped objects
|
||
|
self.iou = self.CFG["iou"]
|
||
|
self.conf = self.CFG["conf"]
|
||
|
|
||
|
def process(self, im0) -> SolutionResults:
|
||
|
"""
|
||
|
Crop detected objects from the input image and save them as separate images.
|
||
|
|
||
|
Args:
|
||
|
im0 (numpy.ndarray): The input image containing detected objects.
|
||
|
|
||
|
Returns:
|
||
|
(SolutionResults): A SolutionResults object containing the total number of cropped objects and processed
|
||
|
image.
|
||
|
|
||
|
Examples:
|
||
|
>>> cropper = ObjectCropper()
|
||
|
>>> frame = cv2.imread("image.jpg")
|
||
|
>>> results = cropper.process(frame)
|
||
|
>>> print(f"Total cropped objects: {results.total_crop_objects}")
|
||
|
"""
|
||
|
with self.profilers[0]:
|
||
|
results = self.model.predict(
|
||
|
im0,
|
||
|
classes=self.classes,
|
||
|
conf=self.conf,
|
||
|
iou=self.iou,
|
||
|
device=self.CFG["device"],
|
||
|
verbose=False,
|
||
|
)[0]
|
||
|
|
||
|
for box in results.boxes:
|
||
|
self.crop_idx += 1
|
||
|
save_one_box(
|
||
|
box.xyxy,
|
||
|
im0,
|
||
|
file=Path(self.crop_dir) / f"crop_{self.crop_idx}.jpg",
|
||
|
BGR=True,
|
||
|
)
|
||
|
|
||
|
# Return SolutionResults
|
||
|
return SolutionResults(plot_im=im0, total_crop_objects=self.crop_idx)
|