96 lines
4.3 KiB
Python
96 lines
4.3 KiB
Python
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||
|
|
||
|
from typing import Any
|
||
|
|
||
|
from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
|
||
|
from ultralytics.utils.plotting import colors
|
||
|
|
||
|
|
||
|
class QueueManager(BaseSolution):
|
||
|
"""
|
||
|
Manages queue counting in real-time video streams based on object tracks.
|
||
|
|
||
|
This class extends BaseSolution to provide functionality for tracking and counting objects within a specified
|
||
|
region in video frames.
|
||
|
|
||
|
Attributes:
|
||
|
counts (int): The current count of objects in the queue.
|
||
|
rect_color (Tuple[int, int, int]): RGB color tuple for drawing the queue region rectangle.
|
||
|
region_length (int): The number of points defining the queue region.
|
||
|
track_line (List[Tuple[int, int]]): List of track line coordinates.
|
||
|
track_history (Dict[int, List[Tuple[int, int]]]): Dictionary storing tracking history for each object.
|
||
|
|
||
|
Methods:
|
||
|
initialize_region: Initialize the queue region.
|
||
|
process: Process a single frame for queue management.
|
||
|
extract_tracks: Extract object tracks from the current frame.
|
||
|
store_tracking_history: Store the tracking history for an object.
|
||
|
display_output: Display the processed output.
|
||
|
|
||
|
Examples:
|
||
|
>>> cap = cv2.VideoCapture("path/to/video.mp4")
|
||
|
>>> queue_manager = QueueManager(region=[100, 100, 200, 200, 300, 300])
|
||
|
>>> while cap.isOpened():
|
||
|
>>> success, im0 = cap.read()
|
||
|
>>> if not success:
|
||
|
>>> break
|
||
|
>>> results = queue_manager.process(im0)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, **kwargs: Any) -> None:
|
||
|
"""Initialize the QueueManager with parameters for tracking and counting objects in a video stream."""
|
||
|
super().__init__(**kwargs)
|
||
|
self.initialize_region()
|
||
|
self.counts = 0 # Queue counts information
|
||
|
self.rect_color = (255, 255, 255) # Rectangle color for visualization
|
||
|
self.region_length = len(self.region) # Store region length for further usage
|
||
|
|
||
|
def process(self, im0) -> SolutionResults:
|
||
|
"""
|
||
|
Process queue management for a single frame of video.
|
||
|
|
||
|
Args:
|
||
|
im0 (numpy.ndarray): Input image for processing, typically a frame from a video stream.
|
||
|
|
||
|
Returns:
|
||
|
(SolutionResults): Contains processed image `im0`, 'queue_count' (int, number of objects in the queue) and
|
||
|
'total_tracks' (int, total number of tracked objects).
|
||
|
|
||
|
Examples:
|
||
|
>>> queue_manager = QueueManager()
|
||
|
>>> frame = cv2.imread("frame.jpg")
|
||
|
>>> results = queue_manager.process(frame)
|
||
|
"""
|
||
|
self.counts = 0 # Reset counts every frame
|
||
|
self.extract_tracks(im0) # Extract tracks from the current frame
|
||
|
annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator
|
||
|
annotator.draw_region(reg_pts=self.region, color=self.rect_color, thickness=self.line_width * 2) # Draw region
|
||
|
|
||
|
for box, track_id, cls, conf in zip(self.boxes, self.track_ids, self.clss, self.confs):
|
||
|
# Draw bounding box and counting region
|
||
|
annotator.box_label(box, label=self.adjust_box_label(cls, conf, track_id), color=colors(track_id, True))
|
||
|
self.store_tracking_history(track_id, box) # Store track history
|
||
|
|
||
|
# Cache frequently accessed attributes
|
||
|
track_history = self.track_history.get(track_id, [])
|
||
|
|
||
|
# Store previous position of track and check if the object is inside the counting region
|
||
|
prev_position = None
|
||
|
if len(track_history) > 1:
|
||
|
prev_position = track_history[-2]
|
||
|
if self.region_length >= 3 and prev_position and self.r_s.contains(self.Point(self.track_line[-1])):
|
||
|
self.counts += 1
|
||
|
|
||
|
# Display queue counts
|
||
|
annotator.queue_counts_display(
|
||
|
f"Queue Counts : {str(self.counts)}",
|
||
|
points=self.region,
|
||
|
region_color=self.rect_color,
|
||
|
txt_color=(104, 31, 17),
|
||
|
)
|
||
|
plot_im = annotator.result()
|
||
|
self.display_output(plot_im) # Display output with base class function
|
||
|
|
||
|
# Return a SolutionResults object with processed data
|
||
|
return SolutionResults(plot_im=plot_im, queue_count=self.counts, total_tracks=len(self.track_ids))
|