image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/solutions/region_counter.py

136 lines
5.8 KiB
Python
Raw Normal View History

2025-07-14 17:36:53 +08:00
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from typing import Any, List, Tuple
import numpy as np
from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
from ultralytics.utils.plotting import colors
class RegionCounter(BaseSolution):
"""
A class for real-time counting of objects within user-defined regions in a video stream.
This class inherits from `BaseSolution` and provides functionality to define polygonal regions in a video frame,
track objects, and count those objects that pass through each defined region. Useful for applications requiring
counting in specified areas, such as monitoring zones or segmented sections.
Attributes:
region_template (dict): Template for creating new counting regions with default attributes including name,
polygon coordinates, and display colors.
counting_regions (list): List storing all defined regions, where each entry is based on `region_template`
and includes specific region settings like name, coordinates, and color.
region_counts (dict): Dictionary storing the count of objects for each named region.
Methods:
add_region: Add a new counting region with specified attributes.
process: Process video frames to count objects in each region.
Examples:
Initialize a RegionCounter and add a counting region
>>> counter = RegionCounter()
>>> counter.add_region("Zone1", [(100, 100), (200, 100), (200, 200), (100, 200)], (255, 0, 0), (255, 255, 255))
>>> results = counter.process(frame)
>>> print(f"Total tracks: {results.total_tracks}")
"""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the RegionCounter for real-time object counting in user-defined regions."""
super().__init__(**kwargs)
self.region_template = {
"name": "Default Region",
"polygon": None,
"counts": 0,
"dragging": False,
"region_color": (255, 255, 255),
"text_color": (0, 0, 0),
}
self.region_counts = {}
self.counting_regions = []
def add_region(
self,
name: str,
polygon_points: List[Tuple],
region_color: Tuple[int, int, int],
text_color: Tuple[int, int, int],
) -> None:
"""
Add a new region to the counting list based on the provided template with specific attributes.
Args:
name (str): Name assigned to the new region.
polygon_points (List[Tuple]): List of (x, y) coordinates defining the region's polygon.
region_color (Tuple[int, int, int]): BGR color for region visualization.
text_color (Tuple[int, int, int]): BGR color for the text within the region.
"""
region = self.region_template.copy()
region.update(
{
"name": name,
"polygon": self.Polygon(polygon_points),
"region_color": region_color,
"text_color": text_color,
}
)
self.counting_regions.append(region)
def process(self, im0: np.ndarray) -> SolutionResults:
"""
Process the input frame to detect and count objects within each defined region.
Args:
im0 (np.ndarray): Input image frame where objects and regions are annotated.
Returns:
(SolutionResults): Contains processed image `plot_im`, 'total_tracks' (int, total number of tracked objects),
and 'region_counts' (dict, counts of objects per region).
"""
self.extract_tracks(im0)
annotator = SolutionAnnotator(im0, line_width=self.line_width)
# Ensure self.region is initialized and structured as a dictionary
if not isinstance(self.region, dict):
self.region = {"Region#01": self.region or self.initialize_region()}
# Draw only valid regions
for idx, (region_name, reg_pts) in enumerate(self.region.items(), start=1):
color = colors(idx, True)
annotator.draw_region(reg_pts, color, self.line_width * 2)
self.add_region(region_name, reg_pts, color, annotator.get_txt_color())
# Prepare regions for containment check (only process valid ones)
for region in self.counting_regions:
if "prepared_polygon" not in region:
region["prepared_polygon"] = self.prep(region["polygon"])
# Convert bounding boxes to NumPy array for center points
boxes_np = np.array([((box[0] + box[2]) / 2, (box[1] + box[3]) / 2) for box in self.boxes], dtype=np.float32)
points = [self.Point(pt) for pt in boxes_np] # Convert centers to Point objects
# Process bounding boxes & check containment
if points:
for point, cls, track_id, box, conf in zip(points, self.clss, self.track_ids, self.boxes, self.confs):
annotator.box_label(box, label=self.adjust_box_label(cls, conf, track_id), color=colors(track_id, True))
for region in self.counting_regions:
if region["prepared_polygon"].contains(point):
region["counts"] += 1
self.region_counts[region["name"]] = region["counts"]
# Display region counts
for region in self.counting_regions:
annotator.text_label(
region["polygon"].bounds,
label=str(region["counts"]),
color=region["region_color"],
txt_color=region["text_color"],
margin=self.line_width * 4,
)
region["counts"] = 0 # Reset for next frame
plot_im = annotator.result()
self.display_output(plot_im)
return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids), region_counts=self.region_counts)