92 lines
3.8 KiB
Python
92 lines
3.8 KiB
Python
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||
|
|
||
|
from typing import Any
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
|
||
|
from ultralytics.utils.plotting import colors
|
||
|
|
||
|
|
||
|
class TrackZone(BaseSolution):
|
||
|
"""
|
||
|
A class to manage region-based object tracking in a video stream.
|
||
|
|
||
|
This class extends the BaseSolution class and provides functionality for tracking objects within a specific region
|
||
|
defined by a polygonal area. Objects outside the region are excluded from tracking.
|
||
|
|
||
|
Attributes:
|
||
|
region (np.ndarray): The polygonal region for tracking, represented as a convex hull of points.
|
||
|
line_width (int): Width of the lines used for drawing bounding boxes and region boundaries.
|
||
|
names (List[str]): List of class names that the model can detect.
|
||
|
boxes (List[np.ndarray]): Bounding boxes of tracked objects.
|
||
|
track_ids (List[int]): Unique identifiers for each tracked object.
|
||
|
clss (List[int]): Class indices of tracked objects.
|
||
|
|
||
|
Methods:
|
||
|
process: Process each frame of the video, applying region-based tracking.
|
||
|
extract_tracks: Extract tracking information from the input frame.
|
||
|
display_output: Display the processed output.
|
||
|
|
||
|
Examples:
|
||
|
>>> tracker = TrackZone()
|
||
|
>>> frame = cv2.imread("frame.jpg")
|
||
|
>>> results = tracker.process(frame)
|
||
|
>>> cv2.imshow("Tracked Frame", results.plot_im)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, **kwargs: Any) -> None:
|
||
|
"""
|
||
|
Initialize the TrackZone class for tracking objects within a defined region in video streams.
|
||
|
|
||
|
Args:
|
||
|
**kwargs (Any): Additional keyword arguments passed to the parent class.
|
||
|
"""
|
||
|
super().__init__(**kwargs)
|
||
|
default_region = [(75, 75), (565, 75), (565, 285), (75, 285)]
|
||
|
self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32))
|
||
|
self.mask = None
|
||
|
|
||
|
def process(self, im0: np.ndarray) -> SolutionResults:
|
||
|
"""
|
||
|
Process the input frame to track objects within a defined region.
|
||
|
|
||
|
This method initializes the annotator, creates a mask for the specified region, extracts tracks
|
||
|
only from the masked area, and updates tracking information. Objects outside the region are ignored.
|
||
|
|
||
|
Args:
|
||
|
im0 (np.ndarray): The input image or frame to be processed.
|
||
|
|
||
|
Returns:
|
||
|
(SolutionResults): Contains processed image `plot_im` and `total_tracks` (int) representing the
|
||
|
total number of tracked objects within the defined region.
|
||
|
|
||
|
Examples:
|
||
|
>>> tracker = TrackZone()
|
||
|
>>> frame = cv2.imread("path/to/image.jpg")
|
||
|
>>> results = tracker.process(frame)
|
||
|
"""
|
||
|
annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator
|
||
|
|
||
|
if self.mask is None: # Create a mask for the region
|
||
|
self.mask = np.zeros_like(im0[:, :, 0])
|
||
|
cv2.fillPoly(self.mask, [self.region], 255)
|
||
|
masked_frame = cv2.bitwise_and(im0, im0, mask=self.mask)
|
||
|
self.extract_tracks(masked_frame)
|
||
|
|
||
|
# Draw the region boundary
|
||
|
cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2)
|
||
|
|
||
|
# Iterate over boxes, track ids, classes indexes list and draw bounding boxes
|
||
|
for box, track_id, cls, conf in zip(self.boxes, self.track_ids, self.clss, self.confs):
|
||
|
annotator.box_label(
|
||
|
box, label=self.adjust_box_label(cls, conf, track_id=track_id), color=colors(track_id, True)
|
||
|
)
|
||
|
|
||
|
plot_im = annotator.result()
|
||
|
self.display_output(plot_im) # Display output with base class function
|
||
|
|
||
|
# Return a SolutionResults
|
||
|
return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))
|