image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/trackers/track.py

120 lines
4.6 KiB
Python
Raw Normal View History

2025-07-14 17:36:53 +08:00
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from functools import partial
from pathlib import Path
import torch
from ultralytics.utils import YAML, IterableSimpleNamespace
from ultralytics.utils.checks import check_yaml
from .bot_sort import BOTSORT
from .byte_tracker import BYTETracker
# A mapping of tracker types to corresponding tracker classes
TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
def on_predict_start(predictor: object, persist: bool = False) -> None:
"""
Initialize trackers for object tracking during prediction.
Args:
predictor (ultralytics.engine.predictor.BasePredictor): The predictor object to initialize trackers for.
persist (bool, optional): Whether to persist the trackers if they already exist.
Examples:
Initialize trackers for a predictor object
>>> predictor = SomePredictorClass()
>>> on_predict_start(predictor, persist=True)
"""
if predictor.args.task == "classify":
raise ValueError("❌ Classification doesn't support 'mode=track'")
if hasattr(predictor, "trackers") and persist:
return
tracker = check_yaml(predictor.args.tracker)
cfg = IterableSimpleNamespace(**YAML.load(tracker))
if cfg.tracker_type not in {"bytetrack", "botsort"}:
raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
predictor._feats = None # reset in case used earlier
if hasattr(predictor, "_hook"):
predictor._hook.remove()
if cfg.tracker_type == "botsort" and cfg.with_reid and cfg.model == "auto":
from ultralytics.nn.modules.head import Detect
if not (
isinstance(predictor.model.model, torch.nn.Module)
and isinstance(predictor.model.model.model[-1], Detect)
and not predictor.model.model.model[-1].end2end
):
cfg.model = "yolo11n-cls.pt"
else:
# Register hook to extract input of Detect layer
def pre_hook(module, input):
predictor._feats = list(input[0]) # unroll to new list to avoid mutation in forward
predictor._hook = predictor.model.model.model[-1].register_forward_pre_hook(pre_hook)
trackers = []
for _ in range(predictor.dataset.bs):
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
trackers.append(tracker)
if predictor.dataset.mode != "stream": # only need one tracker for other modes
break
predictor.trackers = trackers
predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
"""
Postprocess detected boxes and update with object tracking.
Args:
predictor (object): The predictor object containing the predictions.
persist (bool, optional): Whether to persist the trackers if they already exist.
Examples:
Postprocess predictions and update with tracking
>>> predictor = YourPredictorClass()
>>> on_predict_postprocess_end(predictor, persist=True)
"""
is_obb = predictor.args.task == "obb"
is_stream = predictor.dataset.mode == "stream"
for i, result in enumerate(predictor.results):
tracker = predictor.trackers[i if is_stream else 0]
vid_path = predictor.save_dir / Path(result.path).name
if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
tracker.reset()
predictor.vid_path[i if is_stream else 0] = vid_path
det = (result.obb if is_obb else result.boxes).cpu().numpy()
tracks = tracker.update(det, result.orig_img, getattr(result, "feats", None))
if len(tracks) == 0:
continue
idx = tracks[:, -1].astype(int)
predictor.results[i] = result[idx]
update_args = {"obb" if is_obb else "boxes": torch.as_tensor(tracks[:, :-1])}
predictor.results[i].update(**update_args)
def register_tracker(model: object, persist: bool) -> None:
"""
Register tracking callbacks to the model for object tracking during prediction.
Args:
model (object): The model object to register tracking callbacks for.
persist (bool): Whether to persist the trackers if they already exist.
Examples:
Register tracking callbacks to a YOLO model
>>> model = YOLOModel()
>>> register_tracker(model, persist=True)
"""
model.add_callback("on_predict_start", partial(on_predict_start, persist=persist))
model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))