image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/utils/autodevice.py

207 lines
8.6 KiB
Python
Raw Normal View History

2025-07-14 17:36:53 +08:00
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from typing import Any, Dict, List, Optional
from ultralytics.utils import LOGGER
from ultralytics.utils.checks import check_requirements
class GPUInfo:
"""
Manages NVIDIA GPU information via pynvml with robust error handling.
Provides methods to query detailed GPU statistics (utilization, memory, temp, power) and select the most idle
GPUs based on configurable criteria. It safely handles the absence or initialization failure of the pynvml
library by logging warnings and disabling related features, preventing application crashes.
Includes fallback logic using `torch.cuda` for basic device counting if NVML is unavailable during GPU
selection. Manages NVML initialization and shutdown internally.
Attributes:
pynvml (module | None): The `pynvml` module if successfully imported and initialized, otherwise `None`.
nvml_available (bool): Indicates if `pynvml` is ready for use. True if import and `nvmlInit()` succeeded,
False otherwise.
gpu_stats (List[Dict[str, Any]]): A list of dictionaries, each holding stats for one GPU. Populated on
initialization and by `refresh_stats()`. Keys include: 'index', 'name', 'utilization' (%),
'memory_used' (MiB), 'memory_total' (MiB), 'memory_free' (MiB), 'temperature' (C), 'power_draw' (W),
'power_limit' (W or 'N/A'). Empty if NVML is unavailable or queries fail.
Methods:
refresh_stats: Refresh the internal gpu_stats list by querying NVML.
print_status: Print GPU status in a compact table format using current stats.
select_idle_gpu: Select the most idle GPUs based on utilization and free memory.
shutdown: Shut down NVML if it was initialized.
Examples:
Initialize GPUInfo and print status
>>> gpu_info = GPUInfo()
>>> gpu_info.print_status()
Select idle GPUs with minimum memory requirements
>>> selected = gpu_info.select_idle_gpu(count=2, min_memory_fraction=0.2)
>>> print(f"Selected GPU indices: {selected}")
"""
def __init__(self):
"""Initialize GPUInfo, attempting to import and initialize pynvml."""
self.pynvml: Optional[Any] = None
self.nvml_available: bool = False
self.gpu_stats: List[Dict[str, Any]] = []
try:
check_requirements("pynvml>=12.0.0")
self.pynvml = __import__("pynvml")
self.pynvml.nvmlInit()
self.nvml_available = True
self.refresh_stats()
except Exception as e:
LOGGER.warning(f"Failed to initialize pynvml, GPU stats disabled: {e}")
def __del__(self):
"""Ensure NVML is shut down when the object is garbage collected."""
self.shutdown()
def shutdown(self):
"""Shut down NVML if it was initialized."""
if self.nvml_available and self.pynvml:
try:
self.pynvml.nvmlShutdown()
except Exception:
pass
self.nvml_available = False
def refresh_stats(self):
"""Refresh the internal gpu_stats list by querying NVML."""
self.gpu_stats = []
if not self.nvml_available or not self.pynvml:
return
try:
device_count = self.pynvml.nvmlDeviceGetCount()
for i in range(device_count):
self.gpu_stats.append(self._get_device_stats(i))
except Exception as e:
LOGGER.warning(f"Error during device query: {e}")
self.gpu_stats = []
def _get_device_stats(self, index: int) -> Dict[str, Any]:
"""Get stats for a single GPU device."""
handle = self.pynvml.nvmlDeviceGetHandleByIndex(index)
memory = self.pynvml.nvmlDeviceGetMemoryInfo(handle)
util = self.pynvml.nvmlDeviceGetUtilizationRates(handle)
def safe_get(func, *args, default=-1, divisor=1):
try:
val = func(*args)
return val // divisor if divisor != 1 and isinstance(val, (int, float)) else val
except Exception:
return default
temp_type = getattr(self.pynvml, "NVML_TEMPERATURE_GPU", -1)
return {
"index": index,
"name": self.pynvml.nvmlDeviceGetName(handle),
"utilization": util.gpu if util else -1,
"memory_used": memory.used >> 20 if memory else -1, # Convert bytes to MiB
"memory_total": memory.total >> 20 if memory else -1,
"memory_free": memory.free >> 20 if memory else -1,
"temperature": safe_get(self.pynvml.nvmlDeviceGetTemperature, handle, temp_type),
"power_draw": safe_get(self.pynvml.nvmlDeviceGetPowerUsage, handle, divisor=1000), # Convert mW to W
"power_limit": safe_get(self.pynvml.nvmlDeviceGetEnforcedPowerLimit, handle, divisor=1000),
}
def print_status(self):
"""Print GPU status in a compact table format using current stats."""
self.refresh_stats()
if not self.gpu_stats:
LOGGER.warning("No GPU stats available.")
return
stats = self.gpu_stats
name_len = max(len(gpu.get("name", "N/A")) for gpu in stats)
hdr = f"{'Idx':<3} {'Name':<{name_len}} {'Util':>6} {'Mem (MiB)':>15} {'Temp':>5} {'Pwr (W)':>10}"
LOGGER.info(f"\n--- GPU Status ---\n{hdr}\n{'-' * len(hdr)}")
for gpu in stats:
u = f"{gpu['utilization']:>5}%" if gpu["utilization"] >= 0 else " N/A "
m = f"{gpu['memory_used']:>6}/{gpu['memory_total']:<6}" if gpu["memory_used"] >= 0 else " N/A / N/A "
t = f"{gpu['temperature']}C" if gpu["temperature"] >= 0 else " N/A "
p = f"{gpu['power_draw']:>3}/{gpu['power_limit']:<3}" if gpu["power_draw"] >= 0 else " N/A "
LOGGER.info(f"{gpu.get('index'):<3d} {gpu.get('name', 'N/A'):<{name_len}} {u:>6} {m:>15} {t:>5} {p:>10}")
LOGGER.info(f"{'-' * len(hdr)}\n")
def select_idle_gpu(
self, count: int = 1, min_memory_fraction: float = 0, min_util_fraction: float = 0
) -> List[int]:
"""
Select the most idle GPUs based on utilization and free memory.
Args:
count (int): The number of idle GPUs to select.
min_memory_fraction (float): Minimum free memory required as a fraction of total memory.
min_util_fraction (float): Minimum free utilization rate required from 0.0 - 1.0.
Returns:
(List[int]): Indices of the selected GPUs, sorted by idleness (lowest utilization first).
Notes:
Returns fewer than 'count' if not enough qualify or exist.
Returns basic CUDA indices if NVML fails. Empty list if no GPUs found.
"""
assert min_memory_fraction <= 1.0, f"min_memory_fraction must be <= 1.0, got {min_memory_fraction}"
assert min_util_fraction <= 1.0, f"min_util_fraction must be <= 1.0, got {min_util_fraction}"
LOGGER.info(
f"Searching for {count} idle GPUs with free memory >= {min_memory_fraction * 100:.1f}% and free utilization >= {min_util_fraction * 100:.1f}%..."
)
if count <= 0:
return []
self.refresh_stats()
if not self.gpu_stats:
LOGGER.warning("NVML stats unavailable.")
return []
# Filter and sort eligible GPUs
eligible_gpus = [
gpu
for gpu in self.gpu_stats
if gpu.get("memory_free", 0) / gpu.get("memory_total", 1) >= min_memory_fraction
and (100 - gpu.get("utilization", 100)) >= min_util_fraction * 100
]
eligible_gpus.sort(key=lambda x: (x.get("utilization", 101), -x.get("memory_free", 0)))
# Select top 'count' indices
selected = [gpu["index"] for gpu in eligible_gpus[:count]]
if selected:
LOGGER.info(f"Selected idle CUDA devices {selected}")
else:
LOGGER.warning(
f"No GPUs met criteria (Free Mem >= {min_memory_fraction * 100:.1f}% and Free Util >= {min_util_fraction * 100:.1f}%)."
)
return selected
if __name__ == "__main__":
required_free_mem_fraction = 0.2 # Require 20% free VRAM
required_free_util_fraction = 0.2 # Require 20% free utilization
num_gpus_to_select = 1
gpu_info = GPUInfo()
gpu_info.print_status()
selected = gpu_info.select_idle_gpu(
count=num_gpus_to_select,
min_memory_fraction=required_free_mem_fraction,
min_util_fraction=required_free_util_fraction,
)
if selected:
print(f"\n==> Using selected GPU indices: {selected}")
devices = [f"cuda:{idx}" for idx in selected]
print(f" Target devices: {devices}")