--- comments: true description: Explore essential utilities in the Ultralytics package to speed up and enhance your workflows. Learn about data processing, annotations, conversions, and more. keywords: Ultralytics, utilities, data processing, auto annotation, YOLO, dataset conversion, bounding boxes, image compression, machine learning tools --- # Simple Utilities

code with perspective

The `ultralytics` package provides a variety of utilities to support, enhance, and accelerate your workflows. While there are many more available, this guide highlights some of the most useful ones for developers, serving as a practical reference for programming with Ultralytics tools.



Watch: Ultralytics Utilities | Auto Annotation, Explorer API and Dataset Conversion

## Data ### Auto Labeling / Annotations Dataset annotation is a resource-intensive and time-consuming process. If you have an Ultralytics YOLO [object detection](https://www.ultralytics.com/glossary/object-detection) model trained on a reasonable amount of data, you can use it with [SAM](../models/sam.md) to auto-annotate additional data in segmentation format. ```python from ultralytics.data.annotator import auto_annotate auto_annotate( data="path/to/new/data", det_model="yolo11n.pt", sam_model="mobile_sam.pt", device="cuda", output_dir="path/to/save_labels", ) ``` This function does not return any value. For further details: - See the [reference section for `annotator.auto_annotate`](../reference/data/annotator.md#ultralytics.data.annotator.auto_annotate) for more insight on how the function operates. - Use in combination with the [function `segments2boxes`](#convert-segments-to-bounding-boxes) to generate object detection bounding boxes as well. ### Visualize Dataset Annotations This function visualizes YOLO annotations on an image before training, helping to identify and correct any wrong annotations that could lead to incorrect detection results. It draws bounding boxes, labels objects with class names, and adjusts text color based on the background's luminance for better readability. ```python from ultralytics.data.utils import visualize_image_annotations label_map = { # Define the label map with all annotated class labels. 0: "person", 1: "car", } # Visualize visualize_image_annotations( "path/to/image.jpg", # Input image path. "path/to/annotations.txt", # Annotation file path for the image. label_map, ) ``` ### Convert Segmentation Masks into YOLO Format ![Segmentation Masks to YOLO Format](https://github.com/ultralytics/docs/releases/download/0/segmentation-masks-to-yolo-format.avif) Use this to convert a dataset of segmentation mask images to the [Ultralytics YOLO](../models/yolo11.md) segmentation format. This function takes the directory containing the binary format mask images and converts them into YOLO segmentation format. The converted masks will be saved in the specified output directory. ```python from ultralytics.data.converter import convert_segment_masks_to_yolo_seg # The classes here is the total classes in the dataset. # for COCO dataset we have 80 classes. convert_segment_masks_to_yolo_seg(masks_dir="path/to/masks_dir", output_dir="path/to/output_dir", classes=80) ``` ### Convert COCO into YOLO Format Use this to convert [COCO](https://docs.ultralytics.com/datasets/detect/coco/) JSON annotations into the YOLO format. For object detection (bounding box) datasets, set both `use_segments` and `use_keypoints` to `False`. ```python from ultralytics.data.converter import convert_coco convert_coco( "coco/annotations/", use_segments=False, use_keypoints=False, cls91to80=True, ) ``` For additional information about the `convert_coco` function, [visit the reference page](../reference/data/converter.md#ultralytics.data.converter.convert_coco). ### Get Bounding Box Dimensions ```python import cv2 from ultralytics import YOLO from ultralytics.utils.plotting import Annotator model = YOLO("yolo11n.pt") # Load pretrain or fine-tune model # Process the image source = cv2.imread("path/to/image.jpg") results = model(source) # Extract results annotator = Annotator(source, example=model.names) for box in results[0].boxes.xyxy.cpu(): width, height, area = annotator.get_bbox_dimension(box) print(f"Bounding Box Width {width.item()}, Height {height.item()}, Area {area.item()}") ``` ### Convert Bounding Boxes to Segments With existing `x y w h` bounding box data, convert to segments using the `yolo_bbox2segment` function. Organize the files for images and annotations as follows: ``` data |__ images ├─ 001.jpg ├─ 002.jpg ├─ .. └─ NNN.jpg |__ labels ├─ 001.txt ├─ 002.txt ├─ .. └─ NNN.txt ``` ```python from ultralytics.data.converter import yolo_bbox2segment yolo_bbox2segment( im_dir="path/to/images", save_dir=None, # saved to "labels-segment" in images directory sam_model="sam_b.pt", ) ``` [Visit the `yolo_bbox2segment` reference page](../reference/data/converter.md#ultralytics.data.converter.yolo_bbox2segment) for more information regarding the function. ### Convert Segments to Bounding Boxes If you have a dataset that uses the [segmentation dataset format](../datasets/segment/index.md), you can easily convert these into upright (or horizontal) bounding boxes (`x y w h` format) with this function. ```python import numpy as np from ultralytics.utils.ops import segments2boxes segments = np.array( [ [805, 392, 797, 400, ..., 808, 714, 808, 392], [115, 398, 113, 400, ..., 150, 400, 149, 298], [267, 412, 265, 413, ..., 300, 413, 299, 412], ] ) segments2boxes([s.reshape(-1, 2) for s in segments]) # >>> array([[ 741.66, 631.12, 133.31, 479.25], # [ 146.81, 649.69, 185.62, 502.88], # [ 281.81, 636.19, 118.12, 448.88]], # dtype=float32) # xywh bounding boxes ``` To understand how this function works, visit the [reference page](../reference/utils/ops.md#ultralytics.utils.ops.segments2boxes). ## Utilities ### Image Compression Compress a single image file to a reduced size while preserving its aspect ratio and quality. If the input image is smaller than the maximum dimension, it will not be resized. ```python from pathlib import Path from ultralytics.data.utils import compress_one_image for f in Path("path/to/dataset").rglob("*.jpg"): compress_one_image(f) ``` ### Auto-split Dataset Automatically split a dataset into `train`/`val`/`test` splits and save the resulting splits into `autosplit_*.txt` files. This function uses random sampling, which is excluded when using the [`fraction` argument for training](../modes/train.md#train-settings). ```python from ultralytics.data.utils import autosplit autosplit( path="path/to/images", weights=(0.9, 0.1, 0.0), # (train, validation, test) fractional splits annotated_only=False, # split only images with annotation file when True ) ``` See the [Reference page](../reference/data/split.md#ultralytics.data.split.autosplit) for additional details on this function. ### Segment-polygon to Binary Mask Convert a single polygon (as a list) to a binary mask of the specified image size. The polygon should be in the form of `[N, 2]`, where `N` is the number of `(x, y)` points defining the polygon contour. !!! warning `N` **must always** be even. ```python import numpy as np from ultralytics.data.utils import polygon2mask imgsz = (1080, 810) polygon = np.array([805, 392, 797, 400, ..., 808, 714, 808, 392]) # (238, 2) mask = polygon2mask( imgsz, # tuple [polygon], # input as list color=255, # 8-bit binary downsample_ratio=1, ) ``` ## Bounding Boxes ### Bounding Box (Horizontal) Instances To manage bounding box data, the `Bboxes` class helps convert between box coordinate formats, scale box dimensions, calculate areas, include offsets, and more. ```python import numpy as np from ultralytics.utils.instance import Bboxes boxes = Bboxes( bboxes=np.array( [ [22.878, 231.27, 804.98, 756.83], [48.552, 398.56, 245.35, 902.71], [669.47, 392.19, 809.72, 877.04], [221.52, 405.8, 344.98, 857.54], [0, 550.53, 63.01, 873.44], [0.0584, 254.46, 32.561, 324.87], ] ), format="xyxy", ) boxes.areas() # >>> array([ 4.1104e+05, 99216, 68000, 55772, 20347, 2288.5]) boxes.convert("xywh") print(boxes.bboxes) # >>> array( # [[ 413.93, 494.05, 782.1, 525.56], # [ 146.95, 650.63, 196.8, 504.15], # [ 739.6, 634.62, 140.25, 484.85], # [ 283.25, 631.67, 123.46, 451.74], # [ 31.505, 711.99, 63.01, 322.91], # [ 16.31, 289.67, 32.503, 70.41]] # ) ``` See the [`Bboxes` reference section](../reference/utils/instance.md#ultralytics.utils.instance.Bboxes) for more attributes and methods. !!! tip Many of the following functions (and more) can be accessed using the [`Bboxes` class](#bounding-box-horizontal-instances), but if you prefer to work with the functions directly, see the next subsections for how to import them independently. ### Scaling Boxes When scaling an image up or down, you can appropriately scale corresponding bounding box coordinates to match using `ultralytics.utils.ops.scale_boxes`. ```python import cv2 as cv import numpy as np from ultralytics.utils.ops import scale_boxes image = cv.imread("ultralytics/assets/bus.jpg") h, w, c = image.shape resized = cv.resize(image, None, (), fx=1.2, fy=1.2) new_h, new_w, _ = resized.shape xyxy_boxes = np.array( [ [22.878, 231.27, 804.98, 756.83], [48.552, 398.56, 245.35, 902.71], [669.47, 392.19, 809.72, 877.04], [221.52, 405.8, 344.98, 857.54], [0, 550.53, 63.01, 873.44], [0.0584, 254.46, 32.561, 324.87], ] ) new_boxes = scale_boxes( img1_shape=(h, w), # original image dimensions boxes=xyxy_boxes, # boxes from original image img0_shape=(new_h, new_w), # resized image dimensions (scale to) ratio_pad=None, padding=False, xywh=False, ) print(new_boxes) # >>> array( # [[ 27.454, 277.52, 965.98, 908.2], # [ 58.262, 478.27, 294.42, 1083.3], # [ 803.36, 470.63, 971.66, 1052.4], # [ 265.82, 486.96, 413.98, 1029], # [ 0, 660.64, 75.612, 1048.1], # [ 0.0701, 305.35, 39.073, 389.84]] # ) ``` ### Bounding Box Format Conversions #### XYXY → XYWH Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format, where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner. ```python import numpy as np from ultralytics.utils.ops import xyxy2xywh xyxy_boxes = np.array( [ [22.878, 231.27, 804.98, 756.83], [48.552, 398.56, 245.35, 902.71], [669.47, 392.19, 809.72, 877.04], [221.52, 405.8, 344.98, 857.54], [0, 550.53, 63.01, 873.44], [0.0584, 254.46, 32.561, 324.87], ] ) xywh = xyxy2xywh(xyxy_boxes) print(xywh) # >>> array( # [[ 413.93, 494.05, 782.1, 525.56], # [ 146.95, 650.63, 196.8, 504.15], # [ 739.6, 634.62, 140.25, 484.85], # [ 283.25, 631.67, 123.46, 451.74], # [ 31.505, 711.99, 63.01, 322.91], # [ 16.31, 289.67, 32.503, 70.41]] # ) ``` ### All Bounding Box Conversions ```python from ultralytics.utils.ops import ( ltwh2xywh, ltwh2xyxy, xywh2ltwh, # xywh → top-left corner, w, h xywh2xyxy, xywhn2xyxy, # normalized → pixel xyxy2ltwh, # xyxy → top-left corner, w, h xyxy2xywhn, # pixel → normalized ) for func in (ltwh2xywh, ltwh2xyxy, xywh2ltwh, xywh2xyxy, xywhn2xyxy, xyxy2ltwh, xyxy2xywhn): print(help(func)) # print function docstrings ``` See the docstring for each function or visit the `ultralytics.utils.ops` [reference page](../reference/utils/ops.md) to read more. ## Plotting ### Drawing Annotations Ultralytics includes an `Annotator` class for annotating various data types. It's best used with [object detection bounding boxes](../modes/predict.md#boxes), [pose keypoints](../modes/predict.md#keypoints), and [oriented bounding boxes](../modes/predict.md#obb). #### Ultralytics Sweep Annotation !!! example "Python Examples using Ultralytics YOLO 🚀" === "Python" ```python import cv2 from ultralytics import YOLO from ultralytics.engine.results import Results from ultralytics.solutions.solutions import SolutionAnnotator # User defined video path and model file cap = cv2.VideoCapture("path/to/video.mp4") model = YOLO(model="yolo11s-seg.pt") # Model file i.e. yolo11s.pt or yolo11m-seg.pt if not cap.isOpened(): print("Error: Could not open video.") exit() # Initialize the video writer object. w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) video_writer = cv2.VideoWriter("ultralytics.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) masks = None # Initialize variable to store masks data f = 0 # Initialize frame count variable for enabling mouse event. line_x = w # Store width of line. dragging = False # Initialize bool variable for line dragging. classes = model.names # Store model classes names for plotting. window_name = "Ultralytics Sweep Annotator" def drag_line(event, x, _, flags, param): """Mouse callback function to enable dragging a vertical sweep line across the video frame.""" global line_x, dragging if event == cv2.EVENT_LBUTTONDOWN or (flags & cv2.EVENT_FLAG_LBUTTON): line_x = max(0, min(x, w)) dragging = True while cap.isOpened(): # Loop over the video capture object. ret, im0 = cap.read() if not ret: break f = f + 1 # Increment frame count. count = 0 # Re-initialize count variable on every frame for precise counts. results = model.track(im0, persist=True)[0] if f == 1: cv2.namedWindow(window_name) cv2.setMouseCallback(window_name, drag_line) if results.boxes.is_track: if results.masks is not None: masks = results.masks boxes = results.boxes track_ids = results.boxes.id.int().cpu().tolist() clss = results.boxes.cls.cpu().tolist() for mask, box, cls, t_id in zip(masks or [None] * len(boxes), boxes, clss, track_ids): box_data = box.xyxy.cpu().tolist()[0][0] if box_data > line_x: count += 1 results = Results( im0, path=None, names=classes, boxes=box.data, masks=None if mask is None else mask.data ) im0 = results.plot( boxes=True, # display bounding box conf=False, # hide confidence score labels=True, # display labels color_mode="instance", ) # Generate draggable sweep line annotator = SolutionAnnotator(im0) annotator.sweep_annotator(line_x=line_x, line_y=h, label=f"COUNT:{count}") cv2.imshow(window_name, im0) video_writer.write(im0) if cv2.waitKey(1) & 0xFF == ord("q"): break # Release the resources cap.release() video_writer.release() cv2.destroyAllWindows() ``` #### Horizontal Bounding Boxes ```python import cv2 as cv import numpy as np from ultralytics.utils.plotting import Annotator, colors names = { 0: "person", 5: "bus", 11: "stop sign", } image = cv.imread("ultralytics/assets/bus.jpg") ann = Annotator( image, line_width=None, # default auto-size font_size=None, # default auto-size font="Arial.ttf", # must be ImageFont compatible pil=False, # use PIL, otherwise uses OpenCV ) xyxy_boxes = np.array( [ [5, 22.878, 231.27, 804.98, 756.83], # class-idx x1 y1 x2 y2 [0, 48.552, 398.56, 245.35, 902.71], [0, 669.47, 392.19, 809.72, 877.04], [0, 221.52, 405.8, 344.98, 857.54], [0, 0, 550.53, 63.01, 873.44], [11, 0.0584, 254.46, 32.561, 324.87], ] ) for nb, box in enumerate(xyxy_boxes): c_idx, *box = box label = f"{str(nb).zfill(2)}:{names.get(int(c_idx))}" ann.box_label(box, label, color=colors(c_idx, bgr=True)) image_with_bboxes = ann.result() ``` Names can be used from `model.names` when [working with detection results](../modes/predict.md#working-with-results). #### Oriented Bounding Boxes (OBB) ```python import cv2 as cv import numpy as np from ultralytics.utils.plotting import Annotator, colors obb_names = {10: "small vehicle"} obb_image = cv.imread("datasets/dota8/images/train/P1142__1024__0___824.jpg") obb_boxes = np.array( [ [0, 635, 560, 919, 719, 1087, 420, 803, 261], # class-idx x1 y1 x2 y2 x3 y2 x4 y4 [0, 331, 19, 493, 260, 776, 70, 613, -171], [9, 869, 161, 886, 147, 851, 101, 833, 115], ] ) ann = Annotator( obb_image, line_width=None, # default auto-size font_size=None, # default auto-size font="Arial.ttf", # must be ImageFont compatible pil=False, # use PIL, otherwise uses OpenCV ) for obb in obb_boxes: c_idx, *obb = obb obb = np.array(obb).reshape(-1, 4, 2).squeeze() label = f"{obb_names.get(int(c_idx))}" ann.box_label( obb, label, color=colors(c_idx, True), rotated=True, ) image_with_obb = ann.result() ``` #### Bounding Boxes Circle Annotation [Circle Label](https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Annotator.circle_label)



Watch: In-Depth Guide to Text & Circle Annotations with Python Live Demos | Ultralytics Annotations 🚀

```python import cv2 from ultralytics import YOLO from ultralytics.solutions.solutions import SolutionAnnotator from ultralytics.utils.plotting import colors model = YOLO("yolo11s.pt") names = model.names cap = cv2.VideoCapture("path/to/video.mp4") w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) writer = cv2.VideoWriter("Ultralytics circle annotation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h)) while True: ret, im0 = cap.read() if not ret: break annotator = SolutionAnnotator(im0) results = model.predict(im0) boxes = results[0].boxes.xyxy.cpu() clss = results[0].boxes.cls.cpu().tolist() for box, cls in zip(boxes, clss): annotator.circle_label(box, label=names[int(cls)], color=colors(cls, True)) writer.write(im0) cv2.imshow("Ultralytics circle annotation", im0) if cv2.waitKey(1) & 0xFF == ord("q"): break writer.release() cap.release() cv2.destroyAllWindows() ``` #### Bounding Boxes Text Annotation [Text Label](https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Annotator.text_label) ```python import cv2 from ultralytics import YOLO from ultralytics.solutions.solutions import SolutionAnnotator from ultralytics.utils.plotting import colors model = YOLO("yolo11s.pt") names = model.names cap = cv2.VideoCapture("path/to/video.mp4") w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) writer = cv2.VideoWriter("Ultralytics text annotation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h)) while True: ret, im0 = cap.read() if not ret: break annotator = SolutionAnnotator(im0) results = model.predict(im0) boxes = results[0].boxes.xyxy.cpu() clss = results[0].boxes.cls.cpu().tolist() for box, cls in zip(boxes, clss): annotator.text_label(box, label=names[int(cls)], color=colors(cls, True)) writer.write(im0) cv2.imshow("Ultralytics text annotation", im0) if cv2.waitKey(1) & 0xFF == ord("q"): break writer.release() cap.release() cv2.destroyAllWindows() ``` See the [`Annotator` Reference Page](../reference/utils/plotting.md#ultralytics.utils.plotting.Annotator) for additional insight. ## Miscellaneous ### Code Profiling Check the duration for code to run/process either using `with` or as a decorator. ```python from ultralytics.utils.ops import Profile with Profile(device="cuda:0") as dt: pass # operation to measure print(dt) # >>> "Elapsed time is 9.5367431640625e-07 s" ``` ### Ultralytics Supported Formats Need to programmatically use the supported [image or video formats](../modes/predict.md#image-and-video-formats) in Ultralytics? Use these constants if needed: ```python from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS print(IMG_FORMATS) # {'tiff', 'pfm', 'bmp', 'mpo', 'dng', 'jpeg', 'png', 'webp', 'tif', 'jpg'} print(VID_FORMATS) # {'avi', 'mpg', 'wmv', 'mpeg', 'm4v', 'mov', 'mp4', 'asf', 'mkv', 'ts', 'gif', 'webm'} ``` ### Make Divisible Calculate the nearest whole number to `x` that is evenly divisible by `y`. ```python from ultralytics.utils.ops import make_divisible make_divisible(7, 3) # >>> 9 make_divisible(7, 2) # >>> 8 ``` ## FAQ ### What utilities are included in the Ultralytics package to enhance machine learning workflows? The Ultralytics package includes utilities designed to streamline and optimize machine learning workflows. Key utilities include [auto-annotation](../reference/data/annotator.md#ultralytics.data.annotator.auto_annotate) for labeling datasets, converting [COCO](https://docs.ultralytics.com/datasets/detect/coco/) to YOLO format with [convert_coco](../reference/data/converter.md#ultralytics.data.converter.convert_coco), compressing images, and dataset auto-splitting. These tools reduce manual effort, ensure consistency, and enhance data processing efficiency. ### How can I use Ultralytics to auto-label my dataset? If you have a pre-trained Ultralytics YOLO object detection model, you can use it with the [SAM](../models/sam.md) model to auto-annotate your dataset in segmentation format. Here's an example: ```python from ultralytics.data.annotator import auto_annotate auto_annotate( data="path/to/new/data", det_model="yolo11n.pt", sam_model="mobile_sam.pt", device="cuda", output_dir="path/to/save_labels", ) ``` For more details, check the [auto_annotate reference section](../reference/data/annotator.md#ultralytics.data.annotator.auto_annotate). ### How do I convert COCO dataset annotations to YOLO format in Ultralytics? To convert COCO JSON annotations into YOLO format for object detection, you can use the `convert_coco` utility. Here's a sample code snippet: ```python from ultralytics.data.converter import convert_coco convert_coco( "coco/annotations/", use_segments=False, use_keypoints=False, cls91to80=True, ) ``` For additional information, visit the [convert_coco reference page](../reference/data/converter.md#ultralytics.data.converter.convert_coco). ### What is the purpose of the YOLO Data Explorer in the Ultralytics package? The [YOLO Explorer](../datasets/explorer/index.md) is a powerful tool introduced in the `8.1.0` update to enhance dataset understanding. It allows you to use text queries to find object instances in your dataset, making it easier to analyze and manage your data. This tool provides valuable insights into dataset composition and distribution, helping to improve model training and performance. ### How can I convert bounding boxes to segments in Ultralytics? To convert existing bounding box data (in `x y w h` format) to segments, you can use the `yolo_bbox2segment` function. Ensure your files are organized with separate directories for images and labels. ```python from ultralytics.data.converter import yolo_bbox2segment yolo_bbox2segment( im_dir="path/to/images", save_dir=None, # saved to "labels-segment" in the images directory sam_model="sam_b.pt", ) ``` For more information, visit the [yolo_bbox2segment reference page](../reference/data/converter.md#ultralytics.data.converter.yolo_bbox2segment).