# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import argparse import os from typing import List, Optional import cv2 import numpy as np import onnxruntime as ort import requests import yaml def download_file(url: str, local_path: str) -> str: """ Download a file from a URL to a local path. Args: url (str): URL of the file to download. local_path (str): Local path where the file will be saved. """ # Check if the local path already exists if os.path.exists(local_path): print(f"File already exists at {local_path}. Skipping download.") return local_path # Download the file from the URL print(f"Downloading {url} to {local_path}...") response = requests.get(url) with open(local_path, "wb") as f: f.write(response.content) return local_path class RTDETR: """ RT-DETR (Real-Time Detection Transformer) object detection model for ONNX inference and visualization. This class implements the RT-DETR model for object detection tasks, supporting ONNX model inference and visualization of detection results with bounding boxes and class labels. Attributes: model_path (str): Path to the ONNX model file. img_path (str): Path to the input image. conf_thres (float): Confidence threshold for filtering detections. iou_thres (float): IoU threshold for non-maximum suppression. session (ort.InferenceSession): ONNX runtime inference session. model_input (list): Model input metadata. input_width (int): Width dimension required by the model. input_height (int): Height dimension required by the model. classes (List[str]): List of class names from COCO dataset. color_palette (np.ndarray): Random color palette for visualization. img (np.ndarray): Loaded input image. img_height (int): Height of the input image. img_width (int): Width of the input image. Methods: draw_detections: Draw bounding boxes and labels on the input image. preprocess: Preprocess the input image for model inference. bbox_cxcywh_to_xyxy: Convert bounding boxes from center format to corner format. postprocess: Postprocess model output to extract and visualize detections. main: Execute the complete object detection pipeline. Examples: Initialize RT-DETR detector and run inference >>> detector = RTDETR("rtdetr-l.onnx", "image.jpg", conf_thres=0.5) >>> output_image = detector.main() >>> cv2.imshow("Detections", output_image) """ def __init__( self, model_path: str, img_path: str, conf_thres: float = 0.5, iou_thres: float = 0.5, class_names: Optional[str] = None, ): """ Initialize the RT-DETR object detection model. Args: model_path (str): Path to the ONNX model file. img_path (str): Path to the input image. conf_thres (float, optional): Confidence threshold for filtering detections. iou_thres (float, optional): IoU threshold for non-maximum suppression. class_names (Optional[str], optional): Path to a YAML file containing class names. If None, uses COCO dataset classes. """ self.model_path = model_path self.img_path = img_path self.conf_thres = conf_thres self.iou_thres = iou_thres self.classes = class_names # Set up the ONNX runtime session with CUDA and CPU execution providers self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) self.model_input = self.session.get_inputs() self.input_width = self.model_input[0].shape[2] self.input_height = self.model_input[0].shape[3] if self.classes is None: # Load class names from the COCO dataset YAML file self.classes = download_file( "https://raw.githubusercontent.com/ultralytics/" "ultralytics/refs/heads/main/ultralytics/cfg/datasets/coco8.yaml", "coco8.yaml", ) # Parse the YAML file to get class names with open(self.classes) as f: class_data = yaml.safe_load(f) self.classes = list(class_data["names"].values()) # Ensure the classes are a list if not isinstance(self.classes, list): raise ValueError("Classes should be a list of class names.") # Generate a color palette for drawing bounding boxes self.color_palette: np.ndarray = np.random.uniform(0, 255, size=(len(self.classes), 3)) def draw_detections(self, box: np.ndarray, score: float, class_id: int) -> None: """Draw bounding box and label on the input image for a detected object.""" # Extract the coordinates of the bounding box x1, y1, x2, y2 = box # Retrieve the color for the class ID color = self.color_palette[class_id] # Draw the bounding box on the image cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # Create the label text with class name and score label = f"{self.classes[class_id]}: {score:.2f}" # Calculate the dimensions of the label text (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # Calculate the position of the label text label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # Draw a filled rectangle as the background for the label text cv2.rectangle( self.img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED, ) # Draw the label text on the image cv2.putText( self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA ) def preprocess(self) -> np.ndarray: """ Preprocess the input image for model inference. Loads the image, converts color space from BGR to RGB, resizes to model input dimensions, and normalizes pixel values to [0, 1] range. Returns: (np.ndarray): Preprocessed image data with shape (1, 3, H, W) ready for inference. """ # Read the input image using OpenCV self.img = cv2.imread(self.img_path) # Get the height and width of the input image self.img_height, self.img_width = self.img.shape[:2] # Convert the image color space from BGR to RGB img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) # Resize the image to match the input shape img = cv2.resize(img, (self.input_width, self.input_height)) # Normalize the image data by dividing it by 255.0 image_data = np.array(img) / 255.0 # Transpose the image to have the channel dimension as the first dimension image_data = np.transpose(image_data, (2, 0, 1)) # Channel first # Expand the dimensions of the image data to match the expected input shape image_data = np.expand_dims(image_data, axis=0).astype(np.float32) return image_data def bbox_cxcywh_to_xyxy(self, boxes: np.ndarray) -> np.ndarray: """ Convert bounding boxes from center format to corner format. Args: boxes (np.ndarray): Array of shape (N, 4) where each row represents a bounding box in (center_x, center_y, width, height) format. Returns: (np.ndarray): Array of shape (N, 4) with bounding boxes in (x_min, y_min, x_max, y_max) format. """ # Calculate half width and half height of the bounding boxes half_width = boxes[:, 2] / 2 half_height = boxes[:, 3] / 2 # Calculate the coordinates of the bounding boxes x_min = boxes[:, 0] - half_width y_min = boxes[:, 1] - half_height x_max = boxes[:, 0] + half_width y_max = boxes[:, 1] + half_height # Return the bounding boxes in (x_min, y_min, x_max, y_max) format return np.column_stack((x_min, y_min, x_max, y_max)) def postprocess(self, model_output: List[np.ndarray]) -> np.ndarray: """ Postprocess model output to extract and visualize detections. Applies confidence thresholding, converts bounding box format, scales coordinates to original image dimensions, and draws detection annotations. Args: model_output (List[np.ndarray]): Output tensors from the model inference. Returns: (np.ndarray): Annotated image with detection bounding boxes and labels. """ # Squeeze the model output to remove unnecessary dimensions outputs = np.squeeze(model_output[0]) # Extract bounding boxes and scores from the model output boxes = outputs[:, :4] scores = outputs[:, 4:] # Get the class labels and scores for each detection labels = np.argmax(scores, axis=1) scores = np.max(scores, axis=1) # Apply confidence threshold to filter out low-confidence detections mask = scores > self.conf_thres boxes, scores, labels = boxes[mask], scores[mask], labels[mask] # Convert bounding boxes to (x_min, y_min, x_max, y_max) format boxes = self.bbox_cxcywh_to_xyxy(boxes) # Scale bounding boxes to match the original image dimensions boxes[:, 0::2] *= self.img_width boxes[:, 1::2] *= self.img_height # Draw detections on the image for box, score, label in zip(boxes, scores, labels): self.draw_detections(box, score, label) return self.img def main(self) -> np.ndarray: """ Execute the complete object detection pipeline on the input image. Performs preprocessing, ONNX model inference, and postprocessing to generate annotated detection results. Returns: (np.ndarray): Output image with detection annotations including bounding boxes and class labels. """ # Preprocess the image for model input image_data = self.preprocess() # Run the model inference model_output = self.session.run(None, {self.model_input[0].name: image_data}) # Process and return the model output return self.postprocess(model_output) if __name__ == "__main__": # Set up argument parser for command-line arguments parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.") parser.add_argument("--img", type=str, default="bus.jpg", help="Path to the input image.") parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.") parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.") args = parser.parse_args() # Create the detector instance with specified parameters detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres) # Perform detection and get the output image output_image = detection.main() # Display the annotated output image cv2.namedWindow("Output", cv2.WINDOW_NORMAL) cv2.imshow("Output", output_image) cv2.waitKey(0)