# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import time from typing import Tuple import cv2 from ultralytics import YOLO from ultralytics.utils import LOGGER from ultralytics.utils.plotting import Annotator, colors enable_gpu = False # Set True if running with CUDA model_file = "yolo11s.pt" # Path to model file show_fps = True # If True, shows current FPS in top-left corner show_conf = False # Display or hide the confidence score save_video = True # Set True to save output video video_output_path = "interactive_tracker_output.avi" # Output video file name conf = 0.3 # Min confidence for object detection (lower = more detections, possibly more false positives) iou = 0.3 # IoU threshold for NMS (higher = less overlap allowed) max_det = 20 # Maximum objects per image (increase for crowded scenes) tracker = "bytetrack.yaml" # Tracker config: 'bytetrack.yaml', 'botsort.yaml', etc. track_args = { "persist": True, # Keep frames history as a stream for continuous tracking "verbose": False, # Print debug info from tracker } window_name = "Ultralytics YOLO Interactive Tracking" # Output window name LOGGER.info("🚀 Initializing model...") if enable_gpu: LOGGER.info("Using GPU...") model = YOLO(model_file) model.to("cuda") else: LOGGER.info("Using CPU...") model = YOLO(model_file, task="detect") classes = model.names # Store model class names cap = cv2.VideoCapture(0) # Replace with video path if needed # Initialize video writer vw = None if save_video: w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) vw = cv2.VideoWriter(video_output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) selected_object_id = None selected_bbox = None selected_center = None def get_center(x1: int, y1: int, x2: int, y2: int) -> Tuple[int, int]: """ Calculate the center point of a bounding box. Args: x1 (int): Top-left X coordinate. y1 (int): Top-left Y coordinate. x2 (int): Bottom-right X coordinate. y2 (int): Bottom-right Y coordinate. Returns: center_x (int): X-coordinate of the center point. center_y (int): Y-coordinate of the center point. """ return (x1 + x2) // 2, (y1 + y2) // 2 def extend_line_from_edge(mid_x: int, mid_y: int, direction: str, img_shape: Tuple[int, int, int]) -> Tuple[int, int]: """ Calculate the endpoint to extend a line from the center toward an image edge. Args: mid_x (int): X-coordinate of the midpoint. mid_y (int): Y-coordinate of the midpoint. direction (str): Direction to extend ('left', 'right', 'up', 'down'). img_shape (Tuple[int, int, int]): Image shape in (height, width, channels). Returns: end_x (int): X-coordinate of the endpoint. end_y (int): Y-coordinate of the endpoint. """ h, w = img_shape[:2] if direction == "left": return 0, mid_y if direction == "right": return w - 1, mid_y if direction == "up": return mid_x, 0 if direction == "down": return mid_x, h - 1 return mid_x, mid_y def draw_tracking_scope(im, bbox: tuple, color: tuple) -> None: """ Draw tracking scope lines extending from the bounding box to image edges. Args: im (ndarray): Image array to draw on. bbox (tuple): Bounding box coordinates (x1, y1, x2, y2). color (tuple): Color in BGR format for drawing. """ x1, y1, x2, y2 = bbox mid_top = ((x1 + x2) // 2, y1) mid_bottom = ((x1 + x2) // 2, y2) mid_left = (x1, (y1 + y2) // 2) mid_right = (x2, (y1 + y2) // 2) cv2.line(im, mid_top, extend_line_from_edge(*mid_top, "up", im.shape), color, 2) cv2.line(im, mid_bottom, extend_line_from_edge(*mid_bottom, "down", im.shape), color, 2) cv2.line(im, mid_left, extend_line_from_edge(*mid_left, "left", im.shape), color, 2) cv2.line(im, mid_right, extend_line_from_edge(*mid_right, "right", im.shape), color, 2) def click_event(event: int, x: int, y: int, flags: int, param) -> None: """ Handle mouse click events to select an object for focused tracking. Args: event (int): OpenCV mouse event type. x (int): X-coordinate of the mouse event. y (int): Y-coordinate of the mouse event. flags (int): Any relevant flags passed by OpenCV. param (Any): Additional parameters (not used). """ global selected_object_id if event == cv2.EVENT_LBUTTONDOWN: detections = results[0].boxes.data if results[0].boxes is not None else [] if detections is not None: min_area = float("inf") best_match = None for track in detections: track = track.tolist() if len(track) >= 6: x1, y1, x2, y2 = map(int, track[:4]) if x1 <= x <= x2 and y1 <= y <= y2: area = (x2 - x1) * (y2 - y1) if area < min_area: class_id = int(track[-1]) track_id = int(track[4]) if len(track) == 7 else -1 min_area = area best_match = (track_id, model.names[class_id]) if best_match: selected_object_id, label = best_match print(f"🔵 TRACKING STARTED: {label} (ID {selected_object_id})") cv2.namedWindow(window_name) cv2.setMouseCallback(window_name, click_event) fps_counter, fps_timer, fps_display = 0, time.time(), 0 while cap.isOpened(): success, im = cap.read() if not success: break results = model.track(im, conf=conf, iou=iou, max_det=max_det, tracker=tracker, **track_args) annotator = Annotator(im) detections = results[0].boxes.data if results[0].boxes is not None else [] detected_objects = [] for track in detections: track = track.tolist() if len(track) < 6: continue x1, y1, x2, y2 = map(int, track[:4]) class_id = int(track[6]) if len(track) >= 7 else int(track[5]) track_id = int(track[4]) if len(track) == 7 else -1 color = colors(track_id, True) txt_color = annotator.get_txt_color(color) label = f"{classes[class_id]} ID {track_id}" + (f" ({float(track[5]):.2f})" if show_conf else "") if track_id == selected_object_id: draw_tracking_scope(im, (x1, y1, x2, y2), color) center = get_center(x1, y1, x2, y2) cv2.circle(im, center, 6, color, -1) # Pulsing circle for attention pulse_radius = 8 + int(4 * abs(time.time() % 1 - 0.5)) cv2.circle(im, center, pulse_radius, color, 2) annotator.box_label([x1, y1, x2, y2], label=f"ACTIVE: TRACK {track_id}", color=color) else: # Draw dashed box for other objects for i in range(x1, x2, 10): cv2.line(im, (i, y1), (i + 5, y1), color, 3) cv2.line(im, (i, y2), (i + 5, y2), color, 3) for i in range(y1, y2, 10): cv2.line(im, (x1, i), (x1, i + 5), color, 3) cv2.line(im, (x2, i), (x2, i + 5), color, 3) # Draw label text with background (tw, th), bl = cv2.getTextSize(label, 0, 0.7, 2) cv2.rectangle(im, (x1 + 5 - 5, y1 + 20 - th - 5), (x1 + 5 + tw + 5, y1 + 20 + bl), color, -1) cv2.putText(im, label, (x1 + 5, y1 + 20), 0, 0.7, txt_color, 1, cv2.LINE_AA) if show_fps: fps_counter += 1 if time.time() - fps_timer >= 1.0: fps_display = fps_counter fps_counter = 0 fps_timer = time.time() # Draw FPS text with background fps_text = f"FPS: {fps_display}" cv2.putText(im, fps_text, (10, 25), 0, 0.7, (255, 255, 255), 1) (tw, th), bl = cv2.getTextSize(fps_text, 0, 0.7, 2) cv2.rectangle(im, (10 - 5, 25 - th - 5), (10 + tw + 5, 25 + bl), (255, 255, 255), -1) cv2.putText(im, fps_text, (10, 25), 0, 0.7, (104, 31, 17), 1, cv2.LINE_AA) cv2.imshow(window_name, im) if save_video and vw is not None: vw.write(im) # Terminal logging LOGGER.info(f"🟡 DETECTED {len(detections)} OBJECT(S): {' | '.join(detected_objects)}") key = cv2.waitKey(1) & 0xFF if key == ord("q"): break elif key == ord("c"): LOGGER.info("🟢 TRACKING RESET") selected_object_id = None cap.release() if save_video and vw is not None: vw.release() cv2.destroyAllWindows()