# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import argparse import time from collections import defaultdict from typing import List, Optional, Tuple from urllib.parse import urlparse import cv2 import numpy as np import torch from transformers import AutoModel, AutoProcessor from ultralytics import YOLO from ultralytics.data.loaders import get_best_youtube_url from ultralytics.utils.plotting import Annotator from ultralytics.utils.torch_utils import select_device class TorchVisionVideoClassifier: """ Video classifier using pretrained TorchVision models for action recognition. This class provides an interface for video classification using various pretrained models from TorchVision's video model collection, supporting models like S3D, R3D, Swin3D, and MViT architectures. Attributes: model (torch.nn.Module): The loaded TorchVision model for video classification. weights (torchvision.models.video.Weights): The weights used for the model. device (torch.device): The device on which the model is loaded. Methods: available_model_names: Returns a list of available model names. preprocess_crops_for_video_cls: Preprocesses crops for video classification. __call__: Performs inference on the given sequences. postprocess: Postprocesses the model's output. Examples: >>> classifier = TorchVisionVideoClassifier("s3d", device="cpu") >>> crops = [np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8) for _ in range(8)] >>> tensor = classifier.preprocess_crops_for_video_cls(crops) >>> outputs = classifier(tensor) >>> labels, confidences = classifier.postprocess(outputs) References: https://pytorch.org/vision/stable/ """ from torchvision.models.video import ( MViT_V1_B_Weights, MViT_V2_S_Weights, R3D_18_Weights, S3D_Weights, Swin3D_B_Weights, Swin3D_T_Weights, mvit_v1_b, mvit_v2_s, r3d_18, s3d, swin3d_b, swin3d_t, ) model_name_to_model_and_weights = { "s3d": (s3d, S3D_Weights.DEFAULT), "r3d_18": (r3d_18, R3D_18_Weights.DEFAULT), "swin3d_t": (swin3d_t, Swin3D_T_Weights.DEFAULT), "swin3d_b": (swin3d_b, Swin3D_B_Weights.DEFAULT), "mvit_v1_b": (mvit_v1_b, MViT_V1_B_Weights.DEFAULT), "mvit_v2_s": (mvit_v2_s, MViT_V2_S_Weights.DEFAULT), } def __init__(self, model_name: str, device: str | torch.device = ""): """ Initialize the VideoClassifier with the specified model name and device. Args: model_name (str): The name of the model to use. Must be one of the available models. device (str | torch.device): The device to run the model on. """ if model_name not in self.model_name_to_model_and_weights: raise ValueError(f"Invalid model name '{model_name}'. Available models: {self.available_model_names()}") model, self.weights = self.model_name_to_model_and_weights[model_name] self.device = select_device(device) self.model = model(weights=self.weights).to(self.device).eval() @staticmethod def available_model_names() -> List[str]: """ Get the list of available model names. Returns: (List[str]): List of available model names that can be used with this classifier. """ return list(TorchVisionVideoClassifier.model_name_to_model_and_weights.keys()) def preprocess_crops_for_video_cls(self, crops: List[np.ndarray], input_size: List[int] = None) -> torch.Tensor: """ Preprocess a list of crops for video classification. Args: crops (List[np.ndarray]): List of crops to preprocess. Each crop should have dimensions (H, W, C). input_size (List[int], optional): The target input size for the model. Returns: (torch.Tensor): Preprocessed crops as a tensor with dimensions (1, T, C, H, W). """ if input_size is None: input_size = [224, 224] from torchvision.transforms import v2 transform = v2.Compose( [ v2.ToDtype(torch.float32, scale=True), v2.Resize(input_size, antialias=True), v2.Normalize(mean=self.weights.transforms().mean, std=self.weights.transforms().std), ] ) processed_crops = [transform(torch.from_numpy(crop).permute(2, 0, 1)) for crop in crops] return torch.stack(processed_crops).unsqueeze(0).permute(0, 2, 1, 3, 4).to(self.device) def __call__(self, sequences: torch.Tensor) -> torch.Tensor: """ Perform inference on the given sequences. Args: sequences (torch.Tensor): The input sequences for the model with dimensions (B, T, C, H, W) for batched video frames or (T, C, H, W) for single video frames. Returns: (torch.Tensor): The model's output logits. """ with torch.inference_mode(): return self.model(sequences) def postprocess(self, outputs: torch.Tensor) -> Tuple[List[str], List[float]]: """ Postprocess the model's batch output. Args: outputs (torch.Tensor): The model's output logits. Returns: pred_labels (List[str]): The predicted labels. pred_confs (List[float]): The predicted confidences. """ pred_labels = [] pred_confs = [] for output in outputs: pred_class = output.argmax(0).item() pred_label = self.weights.meta["categories"][pred_class] pred_labels.append(pred_label) pred_conf = output.softmax(0)[pred_class].item() pred_confs.append(pred_conf) return pred_labels, pred_confs class HuggingFaceVideoClassifier: """ Zero-shot video classifier using Hugging Face transformer models. This class provides an interface for zero-shot video classification using Hugging Face models, supporting custom label sets and various transformer architectures for video understanding. Attributes: fp16 (bool): Whether to use FP16 for inference. labels (List[str]): List of labels for zero-shot classification. device (torch.device): The device on which the model is loaded. processor (transformers.AutoProcessor): The processor for the model. model (transformers.AutoModel): The loaded Hugging Face model. Methods: preprocess_crops_for_video_cls: Preprocesses crops for video classification. __call__: Performs inference on the given sequences. postprocess: Postprocesses the model's output. Examples: >>> labels = ["walking", "running", "dancing"] >>> classifier = HuggingFaceVideoClassifier(labels, device="cpu") >>> crops = [np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8) for _ in range(8)] >>> tensor = classifier.preprocess_crops_for_video_cls(crops) >>> outputs = classifier(tensor) >>> labels, confidences = classifier.postprocess(outputs) """ def __init__( self, labels: List[str], model_name: str = "microsoft/xclip-base-patch16-zero-shot", device: str | torch.device = "", fp16: bool = False, ): """ Initialize the HuggingFaceVideoClassifier with the specified model name. Args: labels (List[str]): List of labels for zero-shot classification. model_name (str): The name of the model to use. device (str | torch.device): The device to run the model on. fp16 (bool): Whether to use FP16 for inference. """ self.fp16 = fp16 self.labels = labels self.device = select_device(device) self.processor = AutoProcessor.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name).to(self.device) if fp16: model = model.half() self.model = model.eval() def preprocess_crops_for_video_cls(self, crops: List[np.ndarray], input_size: List[int] = None) -> torch.Tensor: """ Preprocess a list of crops for video classification. Args: crops (List[np.ndarray]): List of crops to preprocess. Each crop should have dimensions (H, W, C). input_size (List[int], optional): The target input size for the model. Returns: (torch.Tensor): Preprocessed crops as a tensor with dimensions (1, T, C, H, W). """ if input_size is None: input_size = [224, 224] from torchvision import transforms transform = transforms.Compose( [ transforms.Lambda(lambda x: x.float() / 255.0), transforms.Resize(input_size), transforms.Normalize( mean=self.processor.image_processor.image_mean, std=self.processor.image_processor.image_std ), ] ) processed_crops = [transform(torch.from_numpy(crop).permute(2, 0, 1)) for crop in crops] # (T, C, H, W) output = torch.stack(processed_crops).unsqueeze(0).to(self.device) # (1, T, C, H, W) if self.fp16: output = output.half() return output def __call__(self, sequences: torch.Tensor) -> torch.Tensor: """ Perform inference on the given sequences. Args: sequences (torch.Tensor): The input sequences for the model. Batched video frames with shape (B, T, H, W, C). Returns: (torch.Tensor): The model's output logits. """ input_ids = self.processor(text=self.labels, return_tensors="pt", padding=True)["input_ids"].to(self.device) inputs = {"pixel_values": sequences, "input_ids": input_ids} with torch.inference_mode(): outputs = self.model(**inputs) return outputs.logits_per_video def postprocess(self, outputs: torch.Tensor) -> Tuple[List[List[str]], List[List[float]]]: """ Postprocess the model's batch output. Args: outputs (torch.Tensor): The model's output logits. Returns: pred_labels (List[List[str]]): The predicted top2 labels for each sample. pred_confs (List[List[float]]): The predicted top2 confidences for each sample. """ pred_labels = [] pred_confs = [] with torch.no_grad(): logits_per_video = outputs # Assuming outputs is already the logits tensor probs = logits_per_video.softmax(dim=-1) # Use softmax to convert logits to probabilities for prob in probs: top2_indices = prob.topk(2).indices.tolist() top2_labels = [self.labels[idx] for idx in top2_indices] top2_confs = prob[top2_indices].tolist() pred_labels.append(top2_labels) pred_confs.append(top2_confs) return pred_labels, pred_confs def crop_and_pad(frame: np.ndarray, box: List[float], margin_percent: int) -> np.ndarray: """ Crop box with margin and take square crop from frame. Args: frame (np.ndarray): The input frame to crop from. box (List[float]): The bounding box coordinates [x1, y1, x2, y2]. margin_percent (int): The percentage of margin to add around the box. Returns: (np.ndarray): The cropped and resized square image. """ x1, y1, x2, y2 = map(int, box) w, h = x2 - x1, y2 - y1 # Add margin margin_x, margin_y = int(w * margin_percent / 100), int(h * margin_percent / 100) x1, y1 = max(0, x1 - margin_x), max(0, y1 - margin_y) x2, y2 = min(frame.shape[1], x2 + margin_x), min(frame.shape[0], y2 + margin_y) # Take square crop from frame size = max(y2 - y1, x2 - x1) center_y, center_x = (y1 + y2) // 2, (x1 + x2) // 2 half_size = size // 2 square_crop = frame[ max(0, center_y - half_size) : min(frame.shape[0], center_y + half_size), max(0, center_x - half_size) : min(frame.shape[1], center_x + half_size), ] return cv2.resize(square_crop, (224, 224), interpolation=cv2.INTER_LINEAR) def run( weights: str = "yolo11n.pt", device: str = "", source: str = "https://www.youtube.com/watch?v=dQw4w9WgXcQ", output_path: Optional[str] = None, crop_margin_percentage: int = 10, num_video_sequence_samples: int = 8, skip_frame: int = 2, video_cls_overlap_ratio: float = 0.25, fp16: bool = False, video_classifier_model: str = "microsoft/xclip-base-patch32", labels: List[str] = None, ) -> None: """ Run action recognition on a video source using YOLO for object detection and a video classifier. Args: weights (str): Path to the YOLO model weights. device (str): Device to run the model on. Use 'cuda' for NVIDIA GPU, 'mps' for Apple Silicon, or 'cpu'. source (str): Path to mp4 video file or YouTube URL. output_path (str, optional): Path to save the output video. crop_margin_percentage (int): Percentage of margin to add around detected objects. num_video_sequence_samples (int): Number of video frames to use for classification. skip_frame (int): Number of frames to skip between detections. video_cls_overlap_ratio (float): Overlap ratio between video sequences. fp16 (bool): Whether to use half-precision floating point. video_classifier_model (str): Name or path of the video classifier model. labels (List[str], optional): List of labels for zero-shot classification. """ if labels is None: labels = [ "walking", "running", "brushing teeth", "looking into phone", "weight lifting", "cooking", "sitting", ] # Initialize models and device device = select_device(device) yolo_model = YOLO(weights).to(device) if video_classifier_model in TorchVisionVideoClassifier.available_model_names(): print("'fp16' is not supported for TorchVisionVideoClassifier. Setting fp16 to False.") print( "'labels' is not used for TorchVisionVideoClassifier. Ignoring the provided labels and using Kinetics-400 labels." ) video_classifier = TorchVisionVideoClassifier(video_classifier_model, device=device) else: video_classifier = HuggingFaceVideoClassifier( labels, model_name=video_classifier_model, device=device, fp16=fp16 ) # Initialize video capture if source.startswith("http") and urlparse(source).hostname in {"www.youtube.com", "youtube.com", "youtu.be"}: source = get_best_youtube_url(source) elif not source.endswith(".mp4"): raise ValueError("Invalid source. Supported sources are YouTube URLs and MP4 files.") cap = cv2.VideoCapture(source) # Get video properties frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) # Initialize VideoWriter if output_path is not None: fourcc = cv2.VideoWriter_fourcc(*"mp4v") out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height)) # Initialize track history track_history = defaultdict(list) frame_counter = 0 track_ids_to_infer = [] crops_to_infer = [] pred_labels = [] pred_confs = [] while cap.isOpened(): success, frame = cap.read() if not success: break frame_counter += 1 # Run YOLO tracking results = yolo_model.track(frame, persist=True, classes=[0]) # Track only person class if results[0].boxes.is_track: boxes = results[0].boxes.xyxy.cpu().numpy() track_ids = results[0].boxes.id.cpu().numpy() # Visualize prediction annotator = Annotator(frame, line_width=3, font_size=10, pil=False) if frame_counter % skip_frame == 0: crops_to_infer = [] track_ids_to_infer = [] for box, track_id in zip(boxes, track_ids): if frame_counter % skip_frame == 0: crop = crop_and_pad(frame, box, crop_margin_percentage) track_history[track_id].append(crop) if len(track_history[track_id]) > num_video_sequence_samples: track_history[track_id].pop(0) if len(track_history[track_id]) == num_video_sequence_samples and frame_counter % skip_frame == 0: start_time = time.time() crops = video_classifier.preprocess_crops_for_video_cls(track_history[track_id]) end_time = time.time() preprocess_time = end_time - start_time print(f"video cls preprocess time: {preprocess_time:.4f} seconds") crops_to_infer.append(crops) track_ids_to_infer.append(track_id) if crops_to_infer and ( not pred_labels or frame_counter % int(num_video_sequence_samples * skip_frame * (1 - video_cls_overlap_ratio)) == 0 ): crops_batch = torch.cat(crops_to_infer, dim=0) start_inference_time = time.time() output_batch = video_classifier(crops_batch) end_inference_time = time.time() inference_time = end_inference_time - start_inference_time print(f"video cls inference time: {inference_time:.4f} seconds") pred_labels, pred_confs = video_classifier.postprocess(output_batch) if track_ids_to_infer and crops_to_infer: for box, track_id, pred_label, pred_conf in zip(boxes, track_ids_to_infer, pred_labels, pred_confs): top2_preds = sorted(zip(pred_label, pred_conf), key=lambda x: x[1], reverse=True) label_text = " | ".join([f"{label} ({conf:.2f})" for label, conf in top2_preds]) annotator.box_label(box, label_text, color=(0, 0, 255)) # Write the annotated frame to the output video if output_path is not None: out.write(frame) # Display the annotated frame cv2.imshow("YOLOv8 Tracking with S3D Classification", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() if output_path is not None: out.release() cv2.destroyAllWindows() def parse_opt() -> argparse.Namespace: """Parse command line arguments for action recognition pipeline.""" parser = argparse.ArgumentParser() parser.add_argument("--weights", type=str, default="yolo11n.pt", help="ultralytics detector model path") parser.add_argument("--device", default="", help='cuda device, i.e. 0 or 0,1,2,3 or cpu/mps, "" for auto-detection') parser.add_argument( "--source", type=str, default="https://www.youtube.com/watch?v=dQw4w9WgXcQ", help="video file path or youtube URL", ) parser.add_argument("--output-path", type=str, default="output_video.mp4", help="output video file path") parser.add_argument( "--crop-margin-percentage", type=int, default=10, help="percentage of margin to add around detected objects" ) parser.add_argument( "--num-video-sequence-samples", type=int, default=8, help="number of video frames to use for classification" ) parser.add_argument("--skip-frame", type=int, default=2, help="number of frames to skip between detections") parser.add_argument( "--video-cls-overlap-ratio", type=float, default=0.25, help="overlap ratio between video sequences" ) parser.add_argument("--fp16", action="store_true", help="use FP16 for inference") parser.add_argument( "--video-classifier-model", type=str, default="microsoft/xclip-base-patch32", help="video classifier model name" ) parser.add_argument( "--labels", nargs="+", type=str, default=["dancing", "singing a song"], help="labels for zero-shot video classification", ) return parser.parse_args() def main(opt: argparse.Namespace) -> None: """Run the action recognition pipeline with parsed command line arguments.""" run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)