# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import argparse from typing import List, Tuple import cv2 import numpy as np import onnxruntime as ort import torch from ultralytics.utils import ASSETS, YAML from ultralytics.utils.checks import check_requirements, check_yaml class YOLOv8: """ YOLOv8 object detection model class for handling ONNX inference and visualization. This class provides functionality to load a YOLOv8 ONNX model, perform inference on images, and visualize the detection results with bounding boxes and labels. Attributes: onnx_model (str): Path to the ONNX model file. input_image (str): Path to the input image file. confidence_thres (float): Confidence threshold for filtering detections. iou_thres (float): IoU threshold for non-maximum suppression. classes (List[str]): List of class names from the COCO dataset. color_palette (np.ndarray): Random color palette for visualizing different classes. input_width (int): Width dimension of the model input. input_height (int): Height dimension of the model input. img (np.ndarray): The loaded input image. img_height (int): Height of the input image. img_width (int): Width of the input image. Methods: letterbox: Resize and reshape images while maintaining aspect ratio by adding padding. draw_detections: Draw bounding boxes and labels on the input image based on detected objects. preprocess: Preprocess the input image before performing inference. postprocess: Perform post-processing on the model's output to extract and visualize detections. main: Perform inference using an ONNX model and return the output image with drawn detections. Examples: Initialize YOLOv8 detector and run inference >>> detector = YOLOv8("yolov8n.onnx", "image.jpg", 0.5, 0.5) >>> output_image = detector.main() """ def __init__(self, onnx_model: str, input_image: str, confidence_thres: float, iou_thres: float): """ Initialize an instance of the YOLOv8 class. Args: onnx_model (str): Path to the ONNX model. input_image (str): Path to the input image. confidence_thres (float): Confidence threshold for filtering detections. iou_thres (float): IoU threshold for non-maximum suppression. """ self.onnx_model = onnx_model self.input_image = input_image self.confidence_thres = confidence_thres self.iou_thres = iou_thres # Load the class names from the COCO dataset self.classes = YAML.load(check_yaml("coco8.yaml"))["names"] # Generate a color palette for the classes self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) def letterbox(self, img: np.ndarray, new_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.ndarray, Tuple[int, int]]: """ Resize and reshape images while maintaining aspect ratio by adding padding. Args: img (np.ndarray): Input image to be resized. new_shape (Tuple[int, int]): Target shape (height, width) for the image. Returns: img (np.ndarray): Resized and padded image. pad (Tuple[int, int]): Padding values (top, left) applied to the image. """ shape = img.shape[:2] # current shape [height, width] # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) # Compute padding new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) return img, (top, left) def draw_detections(self, img: np.ndarray, box: List[float], score: float, class_id: int) -> None: """Draw bounding boxes and labels on the input image based on the detected objects.""" # Extract the coordinates of the bounding box x1, y1, w, h = box # Retrieve the color for the class ID color = self.color_palette[class_id] # Draw the bounding box on the image cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) # Create the label text with class name and score label = f"{self.classes[class_id]}: {score:.2f}" # Calculate the dimensions of the label text (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # Calculate the position of the label text label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # Draw a filled rectangle as the background for the label text cv2.rectangle( img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED ) # Draw the label text on the image cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) def preprocess(self) -> Tuple[np.ndarray, Tuple[int, int]]: """ Preprocess the input image before performing inference. This method reads the input image, converts its color space, applies letterboxing to maintain aspect ratio, normalizes pixel values, and prepares the image data for model input. Returns: image_data (np.ndarray): Preprocessed image data ready for inference with shape (1, 3, height, width). pad (Tuple[int, int]): Padding values (top, left) applied during letterboxing. """ # Read the input image using OpenCV self.img = cv2.imread(self.input_image) # Get the height and width of the input image self.img_height, self.img_width = self.img.shape[:2] # Convert the image color space from BGR to RGB img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) img, pad = self.letterbox(img, (self.input_width, self.input_height)) # Normalize the image data by dividing it by 255.0 image_data = np.array(img) / 255.0 # Transpose the image to have the channel dimension as the first dimension image_data = np.transpose(image_data, (2, 0, 1)) # Channel first # Expand the dimensions of the image data to match the expected input shape image_data = np.expand_dims(image_data, axis=0).astype(np.float32) # Return the preprocessed image data return image_data, pad def postprocess(self, input_image: np.ndarray, output: List[np.ndarray], pad: Tuple[int, int]) -> np.ndarray: """ Perform post-processing on the model's output to extract and visualize detections. This method processes the raw model output to extract bounding boxes, scores, and class IDs. It applies non-maximum suppression to filter overlapping detections and draws the results on the input image. Args: input_image (np.ndarray): The input image. output (List[np.ndarray]): The output arrays from the model. pad (Tuple[int, int]): Padding values (top, left) used during letterboxing. Returns: (np.ndarray): The input image with detections drawn on it. """ # Transpose and squeeze the output to match the expected shape outputs = np.transpose(np.squeeze(output[0])) # Get the number of rows in the outputs array rows = outputs.shape[0] # Lists to store the bounding boxes, scores, and class IDs of the detections boxes = [] scores = [] class_ids = [] # Calculate the scaling factors for the bounding box coordinates gain = min(self.input_height / self.img_height, self.input_width / self.img_width) outputs[:, 0] -= pad[1] outputs[:, 1] -= pad[0] # Iterate over each row in the outputs array for i in range(rows): # Extract the class scores from the current row classes_scores = outputs[i][4:] # Find the maximum score among the class scores max_score = np.amax(classes_scores) # If the maximum score is above the confidence threshold if max_score >= self.confidence_thres: # Get the class ID with the highest score class_id = np.argmax(classes_scores) # Extract the bounding box coordinates from the current row x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] # Calculate the scaled coordinates of the bounding box left = int((x - w / 2) / gain) top = int((y - h / 2) / gain) width = int(w / gain) height = int(h / gain) # Add the class ID, score, and box coordinates to the respective lists class_ids.append(class_id) scores.append(max_score) boxes.append([left, top, width, height]) # Apply non-maximum suppression to filter out overlapping bounding boxes indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres) # Iterate over the selected indices after non-maximum suppression for i in indices: # Get the box, score, and class ID corresponding to the index box = boxes[i] score = scores[i] class_id = class_ids[i] # Draw the detection on the input image self.draw_detections(input_image, box, score, class_id) # Return the modified input image return input_image def main(self) -> np.ndarray: """ Perform inference using an ONNX model and return the output image with drawn detections. Returns: (np.ndarray): The output image with drawn detections. """ # Create an inference session using the ONNX model and specify execution providers session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) # Get the model inputs model_inputs = session.get_inputs() # Store the shape of the input for later use input_shape = model_inputs[0].shape self.input_width = input_shape[2] self.input_height = input_shape[3] # Preprocess the image data img_data, pad = self.preprocess() # Run inference using the preprocessed image data outputs = session.run(None, {model_inputs[0].name: img_data}) # Perform post-processing on the outputs to obtain output image return self.postprocess(self.img, outputs, pad) if __name__ == "__main__": # Create an argument parser to handle command-line arguments parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.") parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.") parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold") parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold") args = parser.parse_args() # Check the requirements and select the appropriate backend (CPU or GPU) check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime") # Create an instance of the YOLOv8 class with the specified arguments detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres) # Perform object detection and obtain the output image output_image = detection.main() # Display the output image in a window cv2.namedWindow("Output", cv2.WINDOW_NORMAL) cv2.imshow("Output", output_image) # Wait for a key press to exit cv2.waitKey(0)