# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University # Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/ # Example usage: yolo train data=VisDrone.yaml # parent # ├── ultralytics # └── datasets # └── VisDrone ← downloads here (2.3 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: VisDrone # dataset root dir train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images # Classes names: 0: pedestrian 1: people 2: bicycle 3: car 4: van 5: truck 6: tricycle 7: awning-tricycle 8: bus 9: motor # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | import os from pathlib import Path from ultralytics.utils.downloads import download def visdrone2yolo(dir): """Convert VisDrone annotations to YOLO format, creating label files with normalized bounding box coordinates.""" from PIL import Image from tqdm import tqdm def convert_box(size, box): # Convert VisDrone box to YOLO xywh box dw = 1.0 / size[0] dh = 1.0 / size[1] return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh (dir / "labels").mkdir(parents=True, exist_ok=True) # make labels directory pbar = tqdm((dir / "annotations").glob("*.txt"), desc=f"Converting {dir}") for f in pbar: img_size = Image.open((dir / "images" / f.name).with_suffix(".jpg")).size lines = [] with open(f, encoding="utf-8") as file: # read annotation.txt for row in [x.split(",") for x in file.read().strip().splitlines()]: if row[4] == "0": # VisDrone 'ignored regions' class 0 continue cls = int(row[5]) - 1 box = convert_box(img_size, tuple(map(int, row[:4]))) lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") label_file = str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}") with open(label_file, "w", encoding="utf-8") as fl: fl.writelines(lines) # Download dir = Path(yaml["path"]) # dataset root dir urls = [ "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip", "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip", "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip", "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip", ] download(urls, dir=dir, curl=True, threads=4) # Convert for d in "VisDrone2019-DET-train", "VisDrone2019-DET-val", "VisDrone2019-DET-test-dev": visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels