# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft # Documentation: https://docs.ultralytics.com/datasets/pose/coco/ # Example usage: yolo train data=coco-pose.yaml # parent # ├── ultralytics # └── datasets # └── coco-pose ← downloads here (20.1 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: coco-pose # dataset root dir train: train2017.txt # train images (relative to 'path') 56599 images val: val2017.txt # val images (relative to 'path') 2346 images test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403 # Keypoints kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] # Classes names: 0: person # Download script/URL (optional) download: | from pathlib import Path from ultralytics.utils.downloads import download # Download labels dir = Path(yaml["path"]) # dataset root dir url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/" urls = [f"{url}coco2017labels-pose.zip"] download(urls, dir=dir.parent) # Download data urls = [ "http://images.cocodataset.org/zips/train2017.zip", # 19G, 118k images "http://images.cocodataset.org/zips/val2017.zip", # 1G, 5k images "http://images.cocodataset.org/zips/test2017.zip", # 7G, 41k images (optional) ] download(urls, dir=dir / "images", threads=3)