# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # COCO 2017 dataset https://cocodataset.org by Microsoft # Documentation: https://docs.ultralytics.com/datasets/detect/coco/ # Example usage: yolo train data=coco.yaml # parent # ├── ultralytics # └── datasets # └── coco ← downloads here (20.1 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: coco # dataset root dir train: train2017.txt # train images (relative to 'path') 118287 images val: val2017.txt # val images (relative to 'path') 5000 images test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 # Classes names: 0: person 1: bicycle 2: car 3: motorcycle 4: airplane 5: bus 6: train 7: truck 8: boat 9: traffic light 10: fire hydrant 11: stop sign 12: parking meter 13: bench 14: bird 15: cat 16: dog 17: horse 18: sheep 19: cow 20: elephant 21: bear 22: zebra 23: giraffe 24: backpack 25: umbrella 26: handbag 27: tie 28: suitcase 29: frisbee 30: skis 31: snowboard 32: sports ball 33: kite 34: baseball bat 35: baseball glove 36: skateboard 37: surfboard 38: tennis racket 39: bottle 40: wine glass 41: cup 42: fork 43: knife 44: spoon 45: bowl 46: banana 47: apple 48: sandwich 49: orange 50: broccoli 51: carrot 52: hot dog 53: pizza 54: donut 55: cake 56: chair 57: couch 58: potted plant 59: bed 60: dining table 61: toilet 62: tv 63: laptop 64: mouse 65: remote 66: keyboard 67: cell phone 68: microwave 69: oven 70: toaster 71: sink 72: refrigerator 73: book 74: clock 75: vase 76: scissors 77: teddy bear 78: hair drier 79: toothbrush # Download script/URL (optional) download: | from pathlib import Path from ultralytics.utils.downloads import download # Download labels segments = True # segment or box labels dir = Path(yaml["path"]) # dataset root dir url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/" urls = [url + ("coco2017labels-segments.zip" if segments else "coco2017labels.zip")] # labels download(urls, dir=dir.parent) # Download data urls = [ "http://images.cocodataset.org/zips/train2017.zip", # 19G, 118k images "http://images.cocodataset.org/zips/val2017.zip", # 1G, 5k images "http://images.cocodataset.org/zips/test2017.zip", # 7G, 41k images (optional) ] download(urls, dir=dir / "images", threads=3)