# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from pathlib import Path from typing import List, Optional, Union from ultralytics import SAM, YOLO def auto_annotate( data: Union[str, Path], det_model: str = "yolo11x.pt", sam_model: str = "sam_b.pt", device: str = "", conf: float = 0.25, iou: float = 0.45, imgsz: int = 640, max_det: int = 300, classes: Optional[List[int]] = None, output_dir: Optional[Union[str, Path]] = None, ) -> None: """ Automatically annotate images using a YOLO object detection model and a SAM segmentation model. This function processes images in a specified directory, detects objects using a YOLO model, and then generates segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format. Args: data (str | Path): Path to a folder containing images to be annotated. det_model (str): Path or name of the pre-trained YOLO detection model. sam_model (str): Path or name of the pre-trained SAM segmentation model. device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0'). Empty string for auto-selection. conf (float): Confidence threshold for detection model. iou (float): IoU threshold for filtering overlapping boxes in detection results. imgsz (int): Input image resize dimension. max_det (int): Maximum number of detections per image. classes (List[int], optional): Filter predictions to specified class IDs, returning only relevant detections. output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default directory based on the input data path. Examples: >>> from ultralytics.data.annotator import auto_annotate >>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt") """ det_model = YOLO(det_model) sam_model = SAM(sam_model) data = Path(data) if not output_dir: output_dir = data.parent / f"{data.stem}_auto_annotate_labels" Path(output_dir).mkdir(exist_ok=True, parents=True) det_results = det_model( data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes ) for result in det_results: class_ids = result.boxes.cls.int().tolist() # Extract class IDs from detection results if class_ids: boxes = result.boxes.xyxy # Boxes object for bbox outputs sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device) segments = sam_results[0].masks.xyn with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w", encoding="utf-8") as f: for i, s in enumerate(segments): if s.any(): segment = map(str, s.reshape(-1).tolist()) f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")