# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import glob import math import os import random from copy import deepcopy from multiprocessing.pool import ThreadPool from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Union import cv2 import numpy as np from torch.utils.data import Dataset from ultralytics.data.utils import FORMATS_HELP_MSG, HELP_URL, IMG_FORMATS, check_file_speeds from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM from ultralytics.utils.patches import imread class BaseDataset(Dataset): """ Base dataset class for loading and processing image data. This class provides core functionality for loading images, caching, and preparing data for training and inference in object detection tasks. Attributes: img_path (str): Path to the folder containing images. imgsz (int): Target image size for resizing. augment (bool): Whether to apply data augmentation. single_cls (bool): Whether to treat all objects as a single class. prefix (str): Prefix to print in log messages. fraction (float): Fraction of dataset to utilize. channels (int): Number of channels in the images (1 for grayscale, 3 for RGB). cv2_flag (int): OpenCV flag for reading images. im_files (List[str]): List of image file paths. labels (List[Dict]): List of label data dictionaries. ni (int): Number of images in the dataset. rect (bool): Whether to use rectangular training. batch_size (int): Size of batches. stride (int): Stride used in the model. pad (float): Padding value. buffer (list): Buffer for mosaic images. max_buffer_length (int): Maximum buffer size. ims (list): List of loaded images. im_hw0 (list): List of original image dimensions (h, w). im_hw (list): List of resized image dimensions (h, w). npy_files (List[Path]): List of numpy file paths. cache (str): Cache images to RAM or disk during training. transforms (callable): Image transformation function. batch_shapes (np.ndarray): Batch shapes for rectangular training. batch (np.ndarray): Batch index of each image. Methods: get_img_files: Read image files from the specified path. update_labels: Update labels to include only specified classes. load_image: Load an image from the dataset. cache_images: Cache images to memory or disk. cache_images_to_disk: Save an image as an *.npy file for faster loading. check_cache_disk: Check image caching requirements vs available disk space. check_cache_ram: Check image caching requirements vs available memory. set_rectangle: Set the shape of bounding boxes as rectangles. get_image_and_label: Get and return label information from the dataset. update_labels_info: Custom label format method to be implemented by subclasses. build_transforms: Build transformation pipeline to be implemented by subclasses. get_labels: Get labels method to be implemented by subclasses. """ def __init__( self, img_path: Union[str, List[str]], imgsz: int = 640, cache: Union[bool, str] = False, augment: bool = True, hyp: Dict[str, Any] = DEFAULT_CFG, prefix: str = "", rect: bool = False, batch_size: int = 16, stride: int = 32, pad: float = 0.5, single_cls: bool = False, classes: Optional[List[int]] = None, fraction: float = 1.0, channels: int = 3, ): """ Initialize BaseDataset with given configuration and options. Args: img_path (str | List[str]): Path to the folder containing images or list of image paths. imgsz (int): Image size for resizing. cache (bool | str): Cache images to RAM or disk during training. augment (bool): If True, data augmentation is applied. hyp (Dict[str, Any]): Hyperparameters to apply data augmentation. prefix (str): Prefix to print in log messages. rect (bool): If True, rectangular training is used. batch_size (int): Size of batches. stride (int): Stride used in the model. pad (float): Padding value. single_cls (bool): If True, single class training is used. classes (List[int], optional): List of included classes. fraction (float): Fraction of dataset to utilize. channels (int): Number of channels in the images (1 for grayscale, 3 for RGB). """ super().__init__() self.img_path = img_path self.imgsz = imgsz self.augment = augment self.single_cls = single_cls self.prefix = prefix self.fraction = fraction self.channels = channels self.cv2_flag = cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR self.im_files = self.get_img_files(self.img_path) self.labels = self.get_labels() self.update_labels(include_class=classes) # single_cls and include_class self.ni = len(self.labels) # number of images self.rect = rect self.batch_size = batch_size self.stride = stride self.pad = pad if self.rect: assert self.batch_size is not None self.set_rectangle() # Buffer thread for mosaic images self.buffer = [] # buffer size = batch size self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0 # Cache images (options are cache = True, False, None, "ram", "disk") self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files] self.cache = cache.lower() if isinstance(cache, str) else "ram" if cache is True else None if self.cache == "ram" and self.check_cache_ram(): if hyp.deterministic: LOGGER.warning( "cache='ram' may produce non-deterministic training results. " "Consider cache='disk' as a deterministic alternative if your disk space allows." ) self.cache_images() elif self.cache == "disk" and self.check_cache_disk(): self.cache_images() # Transforms self.transforms = self.build_transforms(hyp=hyp) def get_img_files(self, img_path: Union[str, List[str]]) -> List[str]: """ Read image files from the specified path. Args: img_path (str | List[str]): Path or list of paths to image directories or files. Returns: (List[str]): List of image file paths. Raises: FileNotFoundError: If no images are found or the path doesn't exist. """ try: f = [] # image files for p in img_path if isinstance(img_path, list) else [img_path]: p = Path(p) # os-agnostic if p.is_dir(): # dir f += glob.glob(str(p / "**" / "*.*"), recursive=True) # F = list(p.rglob('*.*')) # pathlib elif p.is_file(): # file with open(p, encoding="utf-8") as t: t = t.read().strip().splitlines() parent = str(p.parent) + os.sep f += [x.replace("./", parent) if x.startswith("./") else x for x in t] # local to global path # F += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) else: raise FileNotFoundError(f"{self.prefix}{p} does not exist") im_files = sorted(x.replace("/", os.sep) for x in f if x.rpartition(".")[-1].lower() in IMG_FORMATS) # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib assert im_files, f"{self.prefix}No images found in {img_path}. {FORMATS_HELP_MSG}" except Exception as e: raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e if self.fraction < 1: im_files = im_files[: round(len(im_files) * self.fraction)] # retain a fraction of the dataset check_file_speeds(im_files, prefix=self.prefix) # check image read speeds return im_files def update_labels(self, include_class: Optional[List[int]]) -> None: """ Update labels to include only specified classes. Args: include_class (List[int], optional): List of classes to include. If None, all classes are included. """ include_class_array = np.array(include_class).reshape(1, -1) for i in range(len(self.labels)): if include_class is not None: cls = self.labels[i]["cls"] bboxes = self.labels[i]["bboxes"] segments = self.labels[i]["segments"] keypoints = self.labels[i]["keypoints"] j = (cls == include_class_array).any(1) self.labels[i]["cls"] = cls[j] self.labels[i]["bboxes"] = bboxes[j] if segments: self.labels[i]["segments"] = [segments[si] for si, idx in enumerate(j) if idx] if keypoints is not None: self.labels[i]["keypoints"] = keypoints[j] if self.single_cls: self.labels[i]["cls"][:, 0] = 0 def load_image(self, i: int, rect_mode: bool = True) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]]: """ Load an image from dataset index 'i'. Args: i (int): Index of the image to load. rect_mode (bool): Whether to use rectangular resizing. Returns: im (np.ndarray): Loaded image as a NumPy array. hw_original (Tuple[int, int]): Original image dimensions in (height, width) format. hw_resized (Tuple[int, int]): Resized image dimensions in (height, width) format. Raises: FileNotFoundError: If the image file is not found. """ im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i] if im is None: # not cached in RAM if fn.exists(): # load npy try: im = np.load(fn) except Exception as e: LOGGER.warning(f"{self.prefix}Removing corrupt *.npy image file {fn} due to: {e}") Path(fn).unlink(missing_ok=True) im = imread(f, flags=self.cv2_flag) # BGR else: # read image im = imread(f, flags=self.cv2_flag) # BGR if im is None: raise FileNotFoundError(f"Image Not Found {f}") h0, w0 = im.shape[:2] # orig hw if rect_mode: # resize long side to imgsz while maintaining aspect ratio r = self.imgsz / max(h0, w0) # ratio if r != 1: # if sizes are not equal w, h = (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz)) im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) elif not (h0 == w0 == self.imgsz): # resize by stretching image to square imgsz im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR) if im.ndim == 2: im = im[..., None] # Add to buffer if training with augmentations if self.augment: self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized self.buffer.append(i) if 1 < len(self.buffer) >= self.max_buffer_length: # prevent empty buffer j = self.buffer.pop(0) if self.cache != "ram": self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None return im, (h0, w0), im.shape[:2] return self.ims[i], self.im_hw0[i], self.im_hw[i] def cache_images(self) -> None: """Cache images to memory or disk for faster training.""" b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes fcn, storage = (self.cache_images_to_disk, "Disk") if self.cache == "disk" else (self.load_image, "RAM") with ThreadPool(NUM_THREADS) as pool: results = pool.imap(fcn, range(self.ni)) pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0) for i, x in pbar: if self.cache == "disk": b += self.npy_files[i].stat().st_size else: # 'ram' self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) b += self.ims[i].nbytes pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {storage})" pbar.close() def cache_images_to_disk(self, i: int) -> None: """Save an image as an *.npy file for faster loading.""" f = self.npy_files[i] if not f.exists(): np.save(f.as_posix(), imread(self.im_files[i]), allow_pickle=False) def check_cache_disk(self, safety_margin: float = 0.5) -> bool: """ Check if there's enough disk space for caching images. Args: safety_margin (float): Safety margin factor for disk space calculation. Returns: (bool): True if there's enough disk space, False otherwise. """ import shutil b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes n = min(self.ni, 30) # extrapolate from 30 random images for _ in range(n): im_file = random.choice(self.im_files) im = imread(im_file) if im is None: continue b += im.nbytes if not os.access(Path(im_file).parent, os.W_OK): self.cache = None LOGGER.warning(f"{self.prefix}Skipping caching images to disk, directory not writeable") return False disk_required = b * self.ni / n * (1 + safety_margin) # bytes required to cache dataset to disk total, used, free = shutil.disk_usage(Path(self.im_files[0]).parent) if disk_required > free: self.cache = None LOGGER.warning( f"{self.prefix}{disk_required / gb:.1f}GB disk space required, " f"with {int(safety_margin * 100)}% safety margin but only " f"{free / gb:.1f}/{total / gb:.1f}GB free, not caching images to disk" ) return False return True def check_cache_ram(self, safety_margin: float = 0.5) -> bool: """ Check if there's enough RAM for caching images. Args: safety_margin (float): Safety margin factor for RAM calculation. Returns: (bool): True if there's enough RAM, False otherwise. """ b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes n = min(self.ni, 30) # extrapolate from 30 random images for _ in range(n): im = imread(random.choice(self.im_files)) # sample image if im is None: continue ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio b += im.nbytes * ratio**2 mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM mem = __import__("psutil").virtual_memory() if mem_required > mem.available: self.cache = None LOGGER.warning( f"{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images " f"with {int(safety_margin * 100)}% safety margin but only " f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, not caching images" ) return False return True def set_rectangle(self) -> None: """Set the shape of bounding boxes for YOLO detections as rectangles.""" bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) # batch index nb = bi[-1] + 1 # number of batches s = np.array([x.pop("shape") for x in self.labels]) # hw ar = s[:, 0] / s[:, 1] # aspect ratio irect = ar.argsort() self.im_files = [self.im_files[i] for i in irect] self.labels = [self.labels[i] for i in irect] ar = ar[irect] # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): ari = ar[bi == i] mini, maxi = ari.min(), ari.max() if maxi < 1: shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride self.batch = bi # batch index of image def __getitem__(self, index: int) -> Dict[str, Any]: """Return transformed label information for given index.""" return self.transforms(self.get_image_and_label(index)) def get_image_and_label(self, index: int) -> Dict[str, Any]: """ Get and return label information from the dataset. Args: index (int): Index of the image to retrieve. Returns: (Dict[str, Any]): Label dictionary with image and metadata. """ label = deepcopy(self.labels[index]) # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948 label.pop("shape", None) # shape is for rect, remove it label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index) label["ratio_pad"] = ( label["resized_shape"][0] / label["ori_shape"][0], label["resized_shape"][1] / label["ori_shape"][1], ) # for evaluation if self.rect: label["rect_shape"] = self.batch_shapes[self.batch[index]] return self.update_labels_info(label) def __len__(self) -> int: """Return the length of the labels list for the dataset.""" return len(self.labels) def update_labels_info(self, label: Dict[str, Any]) -> Dict[str, Any]: """Custom your label format here.""" return label def build_transforms(self, hyp: Optional[Dict[str, Any]] = None): """ Users can customize augmentations here. Examples: >>> if self.augment: ... # Training transforms ... return Compose([]) >>> else: ... # Val transforms ... return Compose([]) """ raise NotImplementedError def get_labels(self) -> List[Dict[str, Any]]: """ Users can customize their own format here. Examples: Ensure output is a dictionary with the following keys: >>> dict( ... im_file=im_file, ... shape=shape, # format: (height, width) ... cls=cls, ... bboxes=bboxes, # xywh ... segments=segments, # xy ... keypoints=keypoints, # xy ... normalized=True, # or False ... bbox_format="xyxy", # or xywh, ltwh ... ) """ raise NotImplementedError