# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import os import random from pathlib import Path from typing import Any, Iterator import numpy as np import torch from PIL import Image from torch.utils.data import dataloader, distributed from ultralytics.data.dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset from ultralytics.data.loaders import ( LOADERS, LoadImagesAndVideos, LoadPilAndNumpy, LoadScreenshots, LoadStreams, LoadTensor, SourceTypes, autocast_list, ) from ultralytics.data.utils import IMG_FORMATS, PIN_MEMORY, VID_FORMATS from ultralytics.utils import RANK, colorstr from ultralytics.utils.checks import check_file class InfiniteDataLoader(dataloader.DataLoader): """ Dataloader that reuses workers for infinite iteration. This dataloader extends the PyTorch DataLoader to provide infinite recycling of workers, which improves efficiency for training loops that need to iterate through the dataset multiple times without recreating workers. Attributes: batch_sampler (_RepeatSampler): A sampler that repeats indefinitely. iterator (Iterator): The iterator from the parent DataLoader. Methods: __len__: Return the length of the batch sampler's sampler. __iter__: Create a sampler that repeats indefinitely. __del__: Ensure workers are properly terminated. reset: Reset the iterator, useful when modifying dataset settings during training. Examples: Create an infinite dataloader for training >>> dataset = YOLODataset(...) >>> dataloader = InfiniteDataLoader(dataset, batch_size=16, shuffle=True) >>> for batch in dataloader: # Infinite iteration >>> train_step(batch) """ def __init__(self, *args: Any, **kwargs: Any): """Initialize the InfiniteDataLoader with the same arguments as DataLoader.""" super().__init__(*args, **kwargs) object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler)) self.iterator = super().__iter__() def __len__(self) -> int: """Return the length of the batch sampler's sampler.""" return len(self.batch_sampler.sampler) def __iter__(self) -> Iterator: """Create an iterator that yields indefinitely from the underlying iterator.""" for _ in range(len(self)): yield next(self.iterator) def __del__(self): """Ensure that workers are properly terminated when the dataloader is deleted.""" try: if not hasattr(self.iterator, "_workers"): return for w in self.iterator._workers: # force terminate if w.is_alive(): w.terminate() self.iterator._shutdown_workers() # cleanup except Exception: pass def reset(self): """Reset the iterator to allow modifications to the dataset during training.""" self.iterator = self._get_iterator() class _RepeatSampler: """ Sampler that repeats forever for infinite iteration. This sampler wraps another sampler and yields its contents indefinitely, allowing for infinite iteration over a dataset without recreating the sampler. Attributes: sampler (Dataset.sampler): The sampler to repeat. """ def __init__(self, sampler: Any): """Initialize the _RepeatSampler with a sampler to repeat indefinitely.""" self.sampler = sampler def __iter__(self) -> Iterator: """Iterate over the sampler indefinitely, yielding its contents.""" while True: yield from iter(self.sampler) def seed_worker(worker_id: int): # noqa """Set dataloader worker seed for reproducibility across worker processes.""" worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32, multi_modal=False): """Build and return a YOLO dataset based on configuration parameters.""" dataset = YOLOMultiModalDataset if multi_modal else YOLODataset return dataset( img_path=img_path, imgsz=cfg.imgsz, batch_size=batch, augment=mode == "train", # augmentation hyp=cfg, # TODO: probably add a get_hyps_from_cfg function rect=cfg.rect or rect, # rectangular batches cache=cfg.cache or None, single_cls=cfg.single_cls or False, stride=int(stride), pad=0.0 if mode == "train" else 0.5, prefix=colorstr(f"{mode}: "), task=cfg.task, classes=cfg.classes, data=data, fraction=cfg.fraction if mode == "train" else 1.0, ) def build_grounding(cfg, img_path, json_file, batch, mode="train", rect=False, stride=32): """Build and return a GroundingDataset based on configuration parameters.""" return GroundingDataset( img_path=img_path, json_file=json_file, imgsz=cfg.imgsz, batch_size=batch, augment=mode == "train", # augmentation hyp=cfg, # TODO: probably add a get_hyps_from_cfg function rect=cfg.rect or rect, # rectangular batches cache=cfg.cache or None, single_cls=cfg.single_cls or False, stride=int(stride), pad=0.0 if mode == "train" else 0.5, prefix=colorstr(f"{mode}: "), task=cfg.task, classes=cfg.classes, fraction=cfg.fraction if mode == "train" else 1.0, ) def build_dataloader(dataset, batch: int, workers: int, shuffle: bool = True, rank: int = -1, drop_last: bool = False): """ Create and return an InfiniteDataLoader or DataLoader for training or validation. Args: dataset (Dataset): Dataset to load data from. batch (int): Batch size for the dataloader. workers (int): Number of worker threads for loading data. shuffle (bool, optional): Whether to shuffle the dataset. rank (int, optional): Process rank in distributed training. -1 for single-GPU training. drop_last (bool, optional): Whether to drop the last incomplete batch. Returns: (InfiniteDataLoader): A dataloader that can be used for training or validation. Examples: Create a dataloader for training >>> dataset = YOLODataset(...) >>> dataloader = build_dataloader(dataset, batch=16, workers=4, shuffle=True) """ batch = min(batch, len(dataset)) nd = torch.cuda.device_count() # number of CUDA devices nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) generator = torch.Generator() generator.manual_seed(6148914691236517205 + RANK) return InfiniteDataLoader( dataset=dataset, batch_size=batch, shuffle=shuffle and sampler is None, num_workers=nw, sampler=sampler, pin_memory=PIN_MEMORY, collate_fn=getattr(dataset, "collate_fn", None), worker_init_fn=seed_worker, generator=generator, drop_last=drop_last, ) def check_source(source): """ Check the type of input source and return corresponding flag values. Args: source (str | int | Path | list | tuple | np.ndarray | PIL.Image | torch.Tensor): The input source to check. Returns: source (str | int | Path | list | tuple | np.ndarray | PIL.Image | torch.Tensor): The processed source. webcam (bool): Whether the source is a webcam. screenshot (bool): Whether the source is a screenshot. from_img (bool): Whether the source is an image or list of images. in_memory (bool): Whether the source is an in-memory object. tensor (bool): Whether the source is a torch.Tensor. Examples: Check a file path source >>> source, webcam, screenshot, from_img, in_memory, tensor = check_source("image.jpg") Check a webcam source >>> source, webcam, screenshot, from_img, in_memory, tensor = check_source(0) """ webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False if isinstance(source, (str, int, Path)): # int for local usb camera source = str(source) source_lower = source.lower() is_file = source_lower.rpartition(".")[-1] in (IMG_FORMATS | VID_FORMATS) is_url = source_lower.startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")) webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) screenshot = source_lower == "screen" if is_url and is_file: source = check_file(source) # download elif isinstance(source, LOADERS): in_memory = True elif isinstance(source, (list, tuple)): source = autocast_list(source) # convert all list elements to PIL or np arrays from_img = True elif isinstance(source, (Image.Image, np.ndarray)): from_img = True elif isinstance(source, torch.Tensor): tensor = True else: raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict") return source, webcam, screenshot, from_img, in_memory, tensor def load_inference_source(source=None, batch: int = 1, vid_stride: int = 1, buffer: bool = False, channels: int = 3): """ Load an inference source for object detection and apply necessary transformations. Args: source (str | Path | torch.Tensor | PIL.Image | np.ndarray, optional): The input source for inference. batch (int, optional): Batch size for dataloaders. vid_stride (int, optional): The frame interval for video sources. buffer (bool, optional): Whether stream frames will be buffered. channels (int, optional): The number of input channels for the model. Returns: (Dataset): A dataset object for the specified input source with attached source_type attribute. Examples: Load an image source for inference >>> dataset = load_inference_source("image.jpg", batch=1) Load a video stream source >>> dataset = load_inference_source("rtsp://example.com/stream", vid_stride=2) """ source, stream, screenshot, from_img, in_memory, tensor = check_source(source) source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor) # Dataloader if tensor: dataset = LoadTensor(source) elif in_memory: dataset = source elif stream: dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer, channels=channels) elif screenshot: dataset = LoadScreenshots(source, channels=channels) elif from_img: dataset = LoadPilAndNumpy(source, channels=channels) else: dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride, channels=channels) # Attach source types to the dataset setattr(dataset, "source_type", source_type) return dataset