# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import json from collections import defaultdict from itertools import repeat from multiprocessing.pool import ThreadPool from pathlib import Path from typing import Any, Dict, List, Optional, Tuple import cv2 import numpy as np import torch from PIL import Image from torch.utils.data import ConcatDataset from ultralytics.utils import LOCAL_RANK, LOGGER, NUM_THREADS, TQDM, colorstr from ultralytics.utils.instance import Instances from ultralytics.utils.ops import resample_segments, segments2boxes from ultralytics.utils.torch_utils import TORCHVISION_0_18 from .augment import ( Compose, Format, LetterBox, RandomLoadText, classify_augmentations, classify_transforms, v8_transforms, ) from .base import BaseDataset from .converter import merge_multi_segment from .utils import ( HELP_URL, check_file_speeds, get_hash, img2label_paths, load_dataset_cache_file, save_dataset_cache_file, verify_image, verify_image_label, ) # Ultralytics dataset *.cache version, >= 1.0.0 for Ultralytics YOLO models DATASET_CACHE_VERSION = "1.0.3" class YOLODataset(BaseDataset): """ Dataset class for loading object detection and/or segmentation labels in YOLO format. This class supports loading data for object detection, segmentation, pose estimation, and oriented bounding box (OBB) tasks using the YOLO format. Attributes: use_segments (bool): Indicates if segmentation masks should be used. use_keypoints (bool): Indicates if keypoints should be used for pose estimation. use_obb (bool): Indicates if oriented bounding boxes should be used. data (dict): Dataset configuration dictionary. Methods: cache_labels: Cache dataset labels, check images and read shapes. get_labels: Return dictionary of labels for YOLO training. build_transforms: Build and append transforms to the list. close_mosaic: Set mosaic, copy_paste and mixup options to 0.0 and build transformations. update_labels_info: Update label format for different tasks. collate_fn: Collate data samples into batches. Examples: >>> dataset = YOLODataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect") >>> dataset.get_labels() """ def __init__(self, *args, data: Optional[Dict] = None, task: str = "detect", **kwargs): """ Initialize the YOLODataset. Args: data (dict, optional): Dataset configuration dictionary. task (str): Task type, one of 'detect', 'segment', 'pose', or 'obb'. *args (Any): Additional positional arguments for the parent class. **kwargs (Any): Additional keyword arguments for the parent class. """ self.use_segments = task == "segment" self.use_keypoints = task == "pose" self.use_obb = task == "obb" self.data = data assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints." super().__init__(*args, channels=self.data["channels"], **kwargs) def cache_labels(self, path: Path = Path("./labels.cache")) -> Dict: """ Cache dataset labels, check images and read shapes. Args: path (Path): Path where to save the cache file. Returns: (dict): Dictionary containing cached labels and related information. """ x = {"labels": []} nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages desc = f"{self.prefix}Scanning {path.parent / path.stem}..." total = len(self.im_files) nkpt, ndim = self.data.get("kpt_shape", (0, 0)) if self.use_keypoints and (nkpt <= 0 or ndim not in {2, 3}): raise ValueError( "'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of " "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'" ) with ThreadPool(NUM_THREADS) as pool: results = pool.imap( func=verify_image_label, iterable=zip( self.im_files, self.label_files, repeat(self.prefix), repeat(self.use_keypoints), repeat(len(self.data["names"])), repeat(nkpt), repeat(ndim), repeat(self.single_cls), ), ) pbar = TQDM(results, desc=desc, total=total) for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar: nm += nm_f nf += nf_f ne += ne_f nc += nc_f if im_file: x["labels"].append( { "im_file": im_file, "shape": shape, "cls": lb[:, 0:1], # n, 1 "bboxes": lb[:, 1:], # n, 4 "segments": segments, "keypoints": keypoint, "normalized": True, "bbox_format": "xywh", } ) if msg: msgs.append(msg) pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt" pbar.close() if msgs: LOGGER.info("\n".join(msgs)) if nf == 0: LOGGER.warning(f"{self.prefix}No labels found in {path}. {HELP_URL}") x["hash"] = get_hash(self.label_files + self.im_files) x["results"] = nf, nm, ne, nc, len(self.im_files) x["msgs"] = msgs # warnings save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION) return x def get_labels(self) -> List[Dict]: """ Return dictionary of labels for YOLO training. This method loads labels from disk or cache, verifies their integrity, and prepares them for training. Returns: (List[dict]): List of label dictionaries, each containing information about an image and its annotations. """ self.label_files = img2label_paths(self.im_files) cache_path = Path(self.label_files[0]).parent.with_suffix(".cache") try: cache, exists = load_dataset_cache_file(cache_path), True # attempt to load a *.cache file assert cache["version"] == DATASET_CACHE_VERSION # matches current version assert cache["hash"] == get_hash(self.label_files + self.im_files) # identical hash except (FileNotFoundError, AssertionError, AttributeError): cache, exists = self.cache_labels(cache_path), False # run cache ops # Display cache nf, nm, ne, nc, n = cache.pop("results") # found, missing, empty, corrupt, total if exists and LOCAL_RANK in {-1, 0}: d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt" TQDM(None, desc=self.prefix + d, total=n, initial=n) # display results if cache["msgs"]: LOGGER.info("\n".join(cache["msgs"])) # display warnings # Read cache [cache.pop(k) for k in ("hash", "version", "msgs")] # remove items labels = cache["labels"] if not labels: raise RuntimeError( f"No valid images found in {cache_path}. Images with incorrectly formatted labels are ignored. {HELP_URL}" ) self.im_files = [lb["im_file"] for lb in labels] # update im_files # Check if the dataset is all boxes or all segments lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels) len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths)) if len_segments and len_boxes != len_segments: LOGGER.warning( f"Box and segment counts should be equal, but got len(segments) = {len_segments}, " f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. " "To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset." ) for lb in labels: lb["segments"] = [] if len_cls == 0: LOGGER.warning(f"Labels are missing or empty in {cache_path}, training may not work correctly. {HELP_URL}") return labels def build_transforms(self, hyp: Optional[Dict] = None) -> Compose: """ Build and append transforms to the list. Args: hyp (dict, optional): Hyperparameters for transforms. Returns: (Compose): Composed transforms. """ if self.augment: hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 hyp.cutmix = hyp.cutmix if self.augment and not self.rect else 0.0 transforms = v8_transforms(self, self.imgsz, hyp) else: transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)]) transforms.append( Format( bbox_format="xywh", normalize=True, return_mask=self.use_segments, return_keypoint=self.use_keypoints, return_obb=self.use_obb, batch_idx=True, mask_ratio=hyp.mask_ratio, mask_overlap=hyp.overlap_mask, bgr=hyp.bgr if self.augment else 0.0, # only affect training. ) ) return transforms def close_mosaic(self, hyp: Dict) -> None: """ Disable mosaic, copy_paste, mixup and cutmix augmentations by setting their probabilities to 0.0. Args: hyp (dict): Hyperparameters for transforms. """ hyp.mosaic = 0.0 hyp.copy_paste = 0.0 hyp.mixup = 0.0 hyp.cutmix = 0.0 self.transforms = self.build_transforms(hyp) def update_labels_info(self, label: Dict) -> Dict: """ Update label format for different tasks. Args: label (dict): Label dictionary containing bboxes, segments, keypoints, etc. Returns: (dict): Updated label dictionary with instances. Note: cls is not with bboxes now, classification and semantic segmentation need an independent cls label Can also support classification and semantic segmentation by adding or removing dict keys there. """ bboxes = label.pop("bboxes") segments = label.pop("segments", []) keypoints = label.pop("keypoints", None) bbox_format = label.pop("bbox_format") normalized = label.pop("normalized") # NOTE: do NOT resample oriented boxes segment_resamples = 100 if self.use_obb else 1000 if len(segments) > 0: # make sure segments interpolate correctly if original length is greater than segment_resamples max_len = max(len(s) for s in segments) segment_resamples = (max_len + 1) if segment_resamples < max_len else segment_resamples # list[np.array(segment_resamples, 2)] * num_samples segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0) else: segments = np.zeros((0, segment_resamples, 2), dtype=np.float32) label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized) return label @staticmethod def collate_fn(batch: List[Dict]) -> Dict: """ Collate data samples into batches. Args: batch (List[dict]): List of dictionaries containing sample data. Returns: (dict): Collated batch with stacked tensors. """ new_batch = {} batch = [dict(sorted(b.items())) for b in batch] # make sure the keys are in the same order keys = batch[0].keys() values = list(zip(*[list(b.values()) for b in batch])) for i, k in enumerate(keys): value = values[i] if k in {"img", "text_feats"}: value = torch.stack(value, 0) elif k == "visuals": value = torch.nn.utils.rnn.pad_sequence(value, batch_first=True) if k in {"masks", "keypoints", "bboxes", "cls", "segments", "obb"}: value = torch.cat(value, 0) new_batch[k] = value new_batch["batch_idx"] = list(new_batch["batch_idx"]) for i in range(len(new_batch["batch_idx"])): new_batch["batch_idx"][i] += i # add target image index for build_targets() new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0) return new_batch class YOLOMultiModalDataset(YOLODataset): """ Dataset class for loading object detection and/or segmentation labels in YOLO format with multi-modal support. This class extends YOLODataset to add text information for multi-modal model training, enabling models to process both image and text data. Methods: update_labels_info: Add text information for multi-modal model training. build_transforms: Enhance data transformations with text augmentation. Examples: >>> dataset = YOLOMultiModalDataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect") >>> batch = next(iter(dataset)) >>> print(batch.keys()) # Should include 'texts' """ def __init__(self, *args, data: Optional[Dict] = None, task: str = "detect", **kwargs): """ Initialize a YOLOMultiModalDataset. Args: data (dict, optional): Dataset configuration dictionary. task (str): Task type, one of 'detect', 'segment', 'pose', or 'obb'. *args (Any): Additional positional arguments for the parent class. **kwargs (Any): Additional keyword arguments for the parent class. """ super().__init__(*args, data=data, task=task, **kwargs) def update_labels_info(self, label: Dict) -> Dict: """ Add text information for multi-modal model training. Args: label (dict): Label dictionary containing bboxes, segments, keypoints, etc. Returns: (dict): Updated label dictionary with instances and texts. """ labels = super().update_labels_info(label) # NOTE: some categories are concatenated with its synonyms by `/`. # NOTE: and `RandomLoadText` would randomly select one of them if there are multiple words. labels["texts"] = [v.split("/") for _, v in self.data["names"].items()] return labels def build_transforms(self, hyp: Optional[Dict] = None) -> Compose: """ Enhance data transformations with optional text augmentation for multi-modal training. Args: hyp (dict, optional): Hyperparameters for transforms. Returns: (Compose): Composed transforms including text augmentation if applicable. """ transforms = super().build_transforms(hyp) if self.augment: # NOTE: hard-coded the args for now. # NOTE: this implementation is different from official yoloe, # the strategy of selecting negative is restricted in one dataset, # while official pre-saved neg embeddings from all datasets at once. transform = RandomLoadText( max_samples=min(self.data["nc"], 80), padding=True, padding_value=self._get_neg_texts(self.category_freq), ) transforms.insert(-1, transform) return transforms @property def category_names(self): """ Return category names for the dataset. Returns: (Set[str]): List of class names. """ names = self.data["names"].values() return {n.strip() for name in names for n in name.split("/")} # category names @property def category_freq(self): """Return frequency of each category in the dataset.""" texts = [v.split("/") for v in self.data["names"].values()] category_freq = defaultdict(int) for label in self.labels: for c in label["cls"].squeeze(-1): # to check text = texts[int(c)] for t in text: t = t.strip() category_freq[t] += 1 return category_freq @staticmethod def _get_neg_texts(category_freq: Dict, threshold: int = 100) -> List[str]: """Get negative text samples based on frequency threshold.""" return [k for k, v in category_freq.items() if v >= threshold] class GroundingDataset(YOLODataset): """ Dataset class for object detection tasks using annotations from a JSON file in grounding format. This dataset is designed for grounding tasks where annotations are provided in a JSON file rather than the standard YOLO format text files. Attributes: json_file (str): Path to the JSON file containing annotations. Methods: get_img_files: Return empty list as image files are read in get_labels. get_labels: Load annotations from a JSON file and prepare them for training. build_transforms: Configure augmentations for training with optional text loading. Examples: >>> dataset = GroundingDataset(img_path="path/to/images", json_file="annotations.json", task="detect") >>> len(dataset) # Number of valid images with annotations """ def __init__(self, *args, task: str = "detect", json_file: str = "", **kwargs): """ Initialize a GroundingDataset for object detection. Args: json_file (str): Path to the JSON file containing annotations. task (str): Must be 'detect' or 'segment' for GroundingDataset. *args (Any): Additional positional arguments for the parent class. **kwargs (Any): Additional keyword arguments for the parent class. """ assert task in {"detect", "segment"}, "GroundingDataset currently only supports `detect` and `segment` tasks" self.json_file = json_file super().__init__(*args, task=task, data={"channels": 3}, **kwargs) def get_img_files(self, img_path: str) -> List: """ The image files would be read in `get_labels` function, return empty list here. Args: img_path (str): Path to the directory containing images. Returns: (list): Empty list as image files are read in get_labels. """ return [] def verify_labels(self, labels: List[Dict[str, Any]]) -> None: """ Verify the number of instances in the dataset matches expected counts. This method checks if the total number of bounding box instances in the provided labels matches the expected count for known datasets. It performs validation against a predefined set of datasets with known instance counts. Args: labels (List[Dict[str, Any]]): List of label dictionaries, where each dictionary contains dataset annotations. Each label dict must have a 'bboxes' key with a numpy array or tensor containing bounding box coordinates. Raises: AssertionError: If the actual instance count doesn't match the expected count for a recognized dataset. Note: For unrecognized datasets (those not in the predefined expected_counts), a warning is logged and verification is skipped. """ expected_counts = { "final_mixed_train_no_coco_segm": 3662412, "final_mixed_train_no_coco": 3681235, "final_flickr_separateGT_train_segm": 638214, "final_flickr_separateGT_train": 640704, } instance_count = sum(label["bboxes"].shape[0] for label in labels) for data_name, count in expected_counts.items(): if data_name in self.json_file: assert instance_count == count, f"'{self.json_file}' has {instance_count} instances, expected {count}." return LOGGER.warning(f"Skipping instance count verification for unrecognized dataset '{self.json_file}'") def cache_labels(self, path: Path = Path("./labels.cache")) -> Dict[str, Any]: """ Load annotations from a JSON file, filter, and normalize bounding boxes for each image. Args: path (Path): Path where to save the cache file. Returns: (Dict[str, Any]): Dictionary containing cached labels and related information. """ x = {"labels": []} LOGGER.info("Loading annotation file...") with open(self.json_file) as f: annotations = json.load(f) images = {f"{x['id']:d}": x for x in annotations["images"]} img_to_anns = defaultdict(list) for ann in annotations["annotations"]: img_to_anns[ann["image_id"]].append(ann) for img_id, anns in TQDM(img_to_anns.items(), desc=f"Reading annotations {self.json_file}"): img = images[f"{img_id:d}"] h, w, f = img["height"], img["width"], img["file_name"] im_file = Path(self.img_path) / f if not im_file.exists(): continue self.im_files.append(str(im_file)) bboxes = [] segments = [] cat2id = {} texts = [] for ann in anns: if ann["iscrowd"]: continue box = np.array(ann["bbox"], dtype=np.float32) box[:2] += box[2:] / 2 box[[0, 2]] /= float(w) box[[1, 3]] /= float(h) if box[2] <= 0 or box[3] <= 0: continue caption = img["caption"] cat_name = " ".join([caption[t[0] : t[1]] for t in ann["tokens_positive"]]).lower().strip() if not cat_name: continue if cat_name not in cat2id: cat2id[cat_name] = len(cat2id) texts.append([cat_name]) cls = cat2id[cat_name] # class box = [cls] + box.tolist() if box not in bboxes: bboxes.append(box) if ann.get("segmentation") is not None: if len(ann["segmentation"]) == 0: segments.append(box) continue elif len(ann["segmentation"]) > 1: s = merge_multi_segment(ann["segmentation"]) s = (np.concatenate(s, axis=0) / np.array([w, h], dtype=np.float32)).reshape(-1).tolist() else: s = [j for i in ann["segmentation"] for j in i] # all segments concatenated s = ( (np.array(s, dtype=np.float32).reshape(-1, 2) / np.array([w, h], dtype=np.float32)) .reshape(-1) .tolist() ) s = [cls] + s segments.append(s) lb = np.array(bboxes, dtype=np.float32) if len(bboxes) else np.zeros((0, 5), dtype=np.float32) if segments: classes = np.array([x[0] for x in segments], dtype=np.float32) segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in segments] # (cls, xy1...) lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) lb = np.array(lb, dtype=np.float32) x["labels"].append( { "im_file": im_file, "shape": (h, w), "cls": lb[:, 0:1], # n, 1 "bboxes": lb[:, 1:], # n, 4 "segments": segments, "normalized": True, "bbox_format": "xywh", "texts": texts, } ) x["hash"] = get_hash(self.json_file) save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION) return x def get_labels(self) -> List[Dict]: """ Load labels from cache or generate them from JSON file. Returns: (List[dict]): List of label dictionaries, each containing information about an image and its annotations. """ cache_path = Path(self.json_file).with_suffix(".cache") try: cache, _ = load_dataset_cache_file(cache_path), True # attempt to load a *.cache file assert cache["version"] == DATASET_CACHE_VERSION # matches current version assert cache["hash"] == get_hash(self.json_file) # identical hash except (FileNotFoundError, AssertionError, AttributeError, ModuleNotFoundError): cache, _ = self.cache_labels(cache_path), False # run cache ops [cache.pop(k) for k in ("hash", "version")] # remove items labels = cache["labels"] self.verify_labels(labels) self.im_files = [str(label["im_file"]) for label in labels] if LOCAL_RANK in {-1, 0}: LOGGER.info(f"Load {self.json_file} from cache file {cache_path}") return labels def build_transforms(self, hyp: Optional[Dict] = None) -> Compose: """ Configure augmentations for training with optional text loading. Args: hyp (dict, optional): Hyperparameters for transforms. Returns: (Compose): Composed transforms including text augmentation if applicable. """ transforms = super().build_transforms(hyp) if self.augment: # NOTE: hard-coded the args for now. # NOTE: this implementation is different from official yoloe, # the strategy of selecting negative is restricted in one dataset, # while official pre-saved neg embeddings from all datasets at once. transform = RandomLoadText( max_samples=80, padding=True, padding_value=self._get_neg_texts(self.category_freq), ) transforms.insert(-1, transform) return transforms @property def category_names(self): """Return unique category names from the dataset.""" return {t.strip() for label in self.labels for text in label["texts"] for t in text} @property def category_freq(self): """Return frequency of each category in the dataset.""" category_freq = defaultdict(int) for label in self.labels: for text in label["texts"]: for t in text: t = t.strip() category_freq[t] += 1 return category_freq @staticmethod def _get_neg_texts(category_freq: Dict, threshold: int = 100) -> List[str]: """Get negative text samples based on frequency threshold.""" return [k for k, v in category_freq.items() if v >= threshold] class YOLOConcatDataset(ConcatDataset): """ Dataset as a concatenation of multiple datasets. This class is useful to assemble different existing datasets for YOLO training, ensuring they use the same collation function. Methods: collate_fn: Static method that collates data samples into batches using YOLODataset's collation function. Examples: >>> dataset1 = YOLODataset(...) >>> dataset2 = YOLODataset(...) >>> combined_dataset = YOLOConcatDataset([dataset1, dataset2]) """ @staticmethod def collate_fn(batch: List[Dict]) -> Dict: """ Collate data samples into batches. Args: batch (List[dict]): List of dictionaries containing sample data. Returns: (dict): Collated batch with stacked tensors. """ return YOLODataset.collate_fn(batch) def close_mosaic(self, hyp: Dict) -> None: """ Set mosaic, copy_paste and mixup options to 0.0 and build transformations. Args: hyp (dict): Hyperparameters for transforms. """ for dataset in self.datasets: if not hasattr(dataset, "close_mosaic"): continue dataset.close_mosaic(hyp) # TODO: support semantic segmentation class SemanticDataset(BaseDataset): """Semantic Segmentation Dataset.""" def __init__(self): """Initialize a SemanticDataset object.""" super().__init__() class ClassificationDataset: """ Dataset class for image classification tasks extending torchvision ImageFolder functionality. This class offers functionalities like image augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep learning models, with optional image transformations and caching mechanisms to speed up training. Attributes: cache_ram (bool): Indicates if caching in RAM is enabled. cache_disk (bool): Indicates if caching on disk is enabled. samples (list): A list of tuples, each containing the path to an image, its class index, path to its .npy cache file (if caching on disk), and optionally the loaded image array (if caching in RAM). torch_transforms (callable): PyTorch transforms to be applied to the images. root (str): Root directory of the dataset. prefix (str): Prefix for logging and cache filenames. Methods: __getitem__: Return subset of data and targets corresponding to given indices. __len__: Return the total number of samples in the dataset. verify_images: Verify all images in dataset. """ def __init__(self, root: str, args, augment: bool = False, prefix: str = ""): """ Initialize YOLO classification dataset with root directory, arguments, augmentations, and cache settings. Args: root (str): Path to the dataset directory where images are stored in a class-specific folder structure. args (Namespace): Configuration containing dataset-related settings such as image size, augmentation parameters, and cache settings. augment (bool, optional): Whether to apply augmentations to the dataset. prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification. """ import torchvision # scope for faster 'import ultralytics' # Base class assigned as attribute rather than used as base class to allow for scoping slow torchvision import if TORCHVISION_0_18: # 'allow_empty' argument first introduced in torchvision 0.18 self.base = torchvision.datasets.ImageFolder(root=root, allow_empty=True) else: self.base = torchvision.datasets.ImageFolder(root=root) self.samples = self.base.samples self.root = self.base.root # Initialize attributes if augment and args.fraction < 1.0: # reduce training fraction self.samples = self.samples[: round(len(self.samples) * args.fraction)] self.prefix = colorstr(f"{prefix}: ") if prefix else "" self.cache_ram = args.cache is True or str(args.cache).lower() == "ram" # cache images into RAM if self.cache_ram: LOGGER.warning( "Classification `cache_ram` training has known memory leak in " "https://github.com/ultralytics/ultralytics/issues/9824, setting `cache_ram=False`." ) self.cache_ram = False self.cache_disk = str(args.cache).lower() == "disk" # cache images on hard drive as uncompressed *.npy files self.samples = self.verify_images() # filter out bad images self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples] # file, index, npy, im scale = (1.0 - args.scale, 1.0) # (0.08, 1.0) self.torch_transforms = ( classify_augmentations( size=args.imgsz, scale=scale, hflip=args.fliplr, vflip=args.flipud, erasing=args.erasing, auto_augment=args.auto_augment, hsv_h=args.hsv_h, hsv_s=args.hsv_s, hsv_v=args.hsv_v, ) if augment else classify_transforms(size=args.imgsz) ) def __getitem__(self, i: int) -> Dict: """ Return subset of data and targets corresponding to given indices. Args: i (int): Index of the sample to retrieve. Returns: (dict): Dictionary containing the image and its class index. """ f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image if self.cache_ram: if im is None: # Warning: two separate if statements required here, do not combine this with previous line im = self.samples[i][3] = cv2.imread(f) elif self.cache_disk: if not fn.exists(): # load npy np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False) im = np.load(fn) else: # read image im = cv2.imread(f) # BGR # Convert NumPy array to PIL image im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)) sample = self.torch_transforms(im) return {"img": sample, "cls": j} def __len__(self) -> int: """Return the total number of samples in the dataset.""" return len(self.samples) def verify_images(self) -> List[Tuple]: """ Verify all images in dataset. Returns: (list): List of valid samples after verification. """ desc = f"{self.prefix}Scanning {self.root}..." path = Path(self.root).with_suffix(".cache") # *.cache file path try: check_file_speeds([file for (file, _) in self.samples[:5]], prefix=self.prefix) # check image read speeds cache = load_dataset_cache_file(path) # attempt to load a *.cache file assert cache["version"] == DATASET_CACHE_VERSION # matches current version assert cache["hash"] == get_hash([x[0] for x in self.samples]) # identical hash nf, nc, n, samples = cache.pop("results") # found, missing, empty, corrupt, total if LOCAL_RANK in {-1, 0}: d = f"{desc} {nf} images, {nc} corrupt" TQDM(None, desc=d, total=n, initial=n) if cache["msgs"]: LOGGER.info("\n".join(cache["msgs"])) # display warnings return samples except (FileNotFoundError, AssertionError, AttributeError): # Run scan if *.cache retrieval failed nf, nc, msgs, samples, x = 0, 0, [], [], {} with ThreadPool(NUM_THREADS) as pool: results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix))) pbar = TQDM(results, desc=desc, total=len(self.samples)) for sample, nf_f, nc_f, msg in pbar: if nf_f: samples.append(sample) if msg: msgs.append(msg) nf += nf_f nc += nc_f pbar.desc = f"{desc} {nf} images, {nc} corrupt" pbar.close() if msgs: LOGGER.info("\n".join(msgs)) x["hash"] = get_hash([x[0] for x in self.samples]) x["results"] = nf, nc, len(samples), samples x["msgs"] = msgs # warnings save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION) return samples