# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import json import os import random import subprocess import time import zipfile from multiprocessing.pool import ThreadPool from pathlib import Path from tarfile import is_tarfile from typing import Dict, List, Tuple, Union import cv2 import numpy as np from PIL import Image, ImageOps from ultralytics.nn.autobackend import check_class_names from ultralytics.utils import ( DATASETS_DIR, LOGGER, MACOS, NUM_THREADS, ROOT, SETTINGS_FILE, TQDM, YAML, clean_url, colorstr, emojis, is_dir_writeable, ) from ultralytics.utils.checks import check_file, check_font, is_ascii from ultralytics.utils.downloads import download, safe_download, unzip_file from ultralytics.utils.ops import segments2boxes HELP_URL = "See https://docs.ultralytics.com/datasets for dataset formatting guidance." IMG_FORMATS = {"bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm", "heic"} # image suffixes VID_FORMATS = {"asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv", "webm"} # video suffixes PIN_MEMORY = str(os.getenv("PIN_MEMORY", not MACOS)).lower() == "true" # global pin_memory for dataloaders FORMATS_HELP_MSG = f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}" def img2label_paths(img_paths: List[str]) -> List[str]: """Convert image paths to label paths by replacing 'images' with 'labels' and extension with '.txt'.""" sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" # /images/, /labels/ substrings return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths] def check_file_speeds( files: List[str], threshold_ms: float = 10, threshold_mb: float = 50, max_files: int = 5, prefix: str = "" ): """ Check dataset file access speed and provide performance feedback. This function tests the access speed of dataset files by measuring ping (stat call) time and read speed. It samples up to 5 files from the provided list and warns if access times exceed the threshold. Args: files (List[str]): List of file paths to check for access speed. threshold_ms (float, optional): Threshold in milliseconds for ping time warnings. threshold_mb (float, optional): Threshold in megabytes per second for read speed warnings. max_files (int, optional): The maximum number of files to check. prefix (str, optional): Prefix string to add to log messages. Examples: >>> from pathlib import Path >>> image_files = list(Path("dataset/images").glob("*.jpg")) >>> check_file_speeds(image_files, threshold_ms=15) """ if not files or len(files) == 0: LOGGER.warning(f"{prefix}Image speed checks: No files to check") return # Sample files (max 5) files = random.sample(files, min(max_files, len(files))) # Test ping (stat time) ping_times = [] file_sizes = [] read_speeds = [] for f in files: try: # Measure ping (stat call) start = time.perf_counter() file_size = os.stat(f).st_size ping_times.append((time.perf_counter() - start) * 1000) # ms file_sizes.append(file_size) # Measure read speed start = time.perf_counter() with open(f, "rb") as file_obj: _ = file_obj.read() read_time = time.perf_counter() - start if read_time > 0: # Avoid division by zero read_speeds.append(file_size / (1 << 20) / read_time) # MB/s except Exception: pass if not ping_times: LOGGER.warning(f"{prefix}Image speed checks: failed to access files") return # Calculate stats with uncertainties avg_ping = np.mean(ping_times) std_ping = np.std(ping_times, ddof=1) if len(ping_times) > 1 else 0 size_msg = f", size: {np.mean(file_sizes) / (1 << 10):.1f} KB" ping_msg = f"ping: {avg_ping:.1f}±{std_ping:.1f} ms" if read_speeds: avg_speed = np.mean(read_speeds) std_speed = np.std(read_speeds, ddof=1) if len(read_speeds) > 1 else 0 speed_msg = f", read: {avg_speed:.1f}±{std_speed:.1f} MB/s" else: speed_msg = "" if avg_ping < threshold_ms or avg_speed < threshold_mb: LOGGER.info(f"{prefix}Fast image access ✅ ({ping_msg}{speed_msg}{size_msg})") else: LOGGER.warning( f"{prefix}Slow image access detected ({ping_msg}{speed_msg}{size_msg}). " f"Use local storage instead of remote/mounted storage for better performance. " f"See https://docs.ultralytics.com/guides/model-training-tips/" ) def get_hash(paths: List[str]) -> str: """Return a single hash value of a list of paths (files or dirs).""" size = 0 for p in paths: try: size += os.stat(p).st_size except OSError: continue h = __import__("hashlib").sha256(str(size).encode()) # hash sizes h.update("".join(paths).encode()) # hash paths return h.hexdigest() # return hash def exif_size(img: Image.Image) -> Tuple[int, int]: """Return exif-corrected PIL size.""" s = img.size # (width, height) if img.format == "JPEG": # only support JPEG images try: if exif := img.getexif(): rotation = exif.get(274, None) # the EXIF key for the orientation tag is 274 if rotation in {6, 8}: # rotation 270 or 90 s = s[1], s[0] except Exception: pass return s def verify_image(args: Tuple) -> Tuple: """Verify one image.""" (im_file, cls), prefix = args # Number (found, corrupt), message nf, nc, msg = 0, 0, "" try: im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size shape = (shape[1], shape[0]) # hw assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" assert im.format.lower() in IMG_FORMATS, f"Invalid image format {im.format}. {FORMATS_HELP_MSG}" if im.format.lower() in {"jpg", "jpeg"}: with open(im_file, "rb") as f: f.seek(-2, 2) if f.read() != b"\xff\xd9": # corrupt JPEG ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) msg = f"{prefix}{im_file}: corrupt JPEG restored and saved" nf = 1 except Exception as e: nc = 1 msg = f"{prefix}{im_file}: ignoring corrupt image/label: {e}" return (im_file, cls), nf, nc, msg def verify_image_label(args: Tuple) -> List: """Verify one image-label pair.""" im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim, single_cls = args # Number (missing, found, empty, corrupt), message, segments, keypoints nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None try: # Verify images im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size shape = (shape[1], shape[0]) # hw assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}. {FORMATS_HELP_MSG}" if im.format.lower() in {"jpg", "jpeg"}: with open(im_file, "rb") as f: f.seek(-2, 2) if f.read() != b"\xff\xd9": # corrupt JPEG ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) msg = f"{prefix}{im_file}: corrupt JPEG restored and saved" # Verify labels if os.path.isfile(lb_file): nf = 1 # label found with open(lb_file, encoding="utf-8") as f: lb = [x.split() for x in f.read().strip().splitlines() if len(x)] if any(len(x) > 6 for x in lb) and (not keypoint): # is segment classes = np.array([x[0] for x in lb], dtype=np.float32) segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) lb = np.array(lb, dtype=np.float32) if nl := len(lb): if keypoint: assert lb.shape[1] == (5 + nkpt * ndim), f"labels require {(5 + nkpt * ndim)} columns each" points = lb[:, 5:].reshape(-1, ndim)[:, :2] else: assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected" points = lb[:, 1:] assert points.max() <= 1, f"non-normalized or out of bounds coordinates {points[points > 1]}" assert lb.min() >= 0, f"negative label values {lb[lb < 0]}" # All labels if single_cls: lb[:, 0] = 0 max_cls = lb[:, 0].max() # max label count assert max_cls < num_cls, ( f"Label class {int(max_cls)} exceeds dataset class count {num_cls}. " f"Possible class labels are 0-{num_cls - 1}" ) _, i = np.unique(lb, axis=0, return_index=True) if len(i) < nl: # duplicate row check lb = lb[i] # remove duplicates if segments: segments = [segments[x] for x in i] msg = f"{prefix}{im_file}: {nl - len(i)} duplicate labels removed" else: ne = 1 # label empty lb = np.zeros((0, (5 + nkpt * ndim) if keypoint else 5), dtype=np.float32) else: nm = 1 # label missing lb = np.zeros((0, (5 + nkpt * ndim) if keypoints else 5), dtype=np.float32) if keypoint: keypoints = lb[:, 5:].reshape(-1, nkpt, ndim) if ndim == 2: kpt_mask = np.where((keypoints[..., 0] < 0) | (keypoints[..., 1] < 0), 0.0, 1.0).astype(np.float32) keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1) # (nl, nkpt, 3) lb = lb[:, :5] return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg except Exception as e: nc = 1 msg = f"{prefix}{im_file}: ignoring corrupt image/label: {e}" return [None, None, None, None, None, nm, nf, ne, nc, msg] def visualize_image_annotations(image_path: str, txt_path: str, label_map: Dict[int, str]): """ Visualize YOLO annotations (bounding boxes and class labels) on an image. This function reads an image and its corresponding annotation file in YOLO format, then draws bounding boxes around detected objects and labels them with their respective class names. The bounding box colors are assigned based on the class ID, and the text color is dynamically adjusted for readability, depending on the background color's luminance. Args: image_path (str): The path to the image file to annotate, and it can be in formats supported by PIL. txt_path (str): The path to the annotation file in YOLO format, that should contain one line per object. label_map (Dict[int, str]): A dictionary that maps class IDs (integers) to class labels (strings). Examples: >>> label_map = {0: "cat", 1: "dog", 2: "bird"} # It should include all annotated classes details >>> visualize_image_annotations("path/to/image.jpg", "path/to/annotations.txt", label_map) """ import matplotlib.pyplot as plt from ultralytics.utils.plotting import colors img = np.array(Image.open(image_path)) img_height, img_width = img.shape[:2] annotations = [] with open(txt_path, encoding="utf-8") as file: for line in file: class_id, x_center, y_center, width, height = map(float, line.split()) x = (x_center - width / 2) * img_width y = (y_center - height / 2) * img_height w = width * img_width h = height * img_height annotations.append((x, y, w, h, int(class_id))) fig, ax = plt.subplots(1) # Plot the image and annotations for x, y, w, h, label in annotations: color = tuple(c / 255 for c in colors(label, True)) # Get and normalize the RGB color rect = plt.Rectangle((x, y), w, h, linewidth=2, edgecolor=color, facecolor="none") # Create a rectangle ax.add_patch(rect) luminance = 0.2126 * color[0] + 0.7152 * color[1] + 0.0722 * color[2] # Formula for luminance ax.text(x, y - 5, label_map[label], color="white" if luminance < 0.5 else "black", backgroundcolor=color) ax.imshow(img) plt.show() def polygon2mask( imgsz: Tuple[int, int], polygons: List[np.ndarray], color: int = 1, downsample_ratio: int = 1 ) -> np.ndarray: """ Convert a list of polygons to a binary mask of the specified image size. Args: imgsz (Tuple[int, int]): The size of the image as (height, width). polygons (List[np.ndarray]): A list of polygons. Each polygon is an array with shape (N, M), where N is the number of polygons, and M is the number of points such that M % 2 = 0. color (int, optional): The color value to fill in the polygons on the mask. downsample_ratio (int, optional): Factor by which to downsample the mask. Returns: (np.ndarray): A binary mask of the specified image size with the polygons filled in. """ mask = np.zeros(imgsz, dtype=np.uint8) polygons = np.asarray(polygons, dtype=np.int32) polygons = polygons.reshape((polygons.shape[0], -1, 2)) cv2.fillPoly(mask, polygons, color=color) nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio) # Note: fillPoly first then resize is trying to keep the same loss calculation method when mask-ratio=1 return cv2.resize(mask, (nw, nh)) def polygons2masks( imgsz: Tuple[int, int], polygons: List[np.ndarray], color: int, downsample_ratio: int = 1 ) -> np.ndarray: """ Convert a list of polygons to a set of binary masks of the specified image size. Args: imgsz (Tuple[int, int]): The size of the image as (height, width). polygons (List[np.ndarray]): A list of polygons. Each polygon is an array with shape (N, M), where N is the number of polygons, and M is the number of points such that M % 2 = 0. color (int): The color value to fill in the polygons on the masks. downsample_ratio (int, optional): Factor by which to downsample each mask. Returns: (np.ndarray): A set of binary masks of the specified image size with the polygons filled in. """ return np.array([polygon2mask(imgsz, [x.reshape(-1)], color, downsample_ratio) for x in polygons]) def polygons2masks_overlap( imgsz: Tuple[int, int], segments: List[np.ndarray], downsample_ratio: int = 1 ) -> Tuple[np.ndarray, np.ndarray]: """Return a (640, 640) overlap mask.""" masks = np.zeros( (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio), dtype=np.int32 if len(segments) > 255 else np.uint8, ) areas = [] ms = [] for si in range(len(segments)): mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1) ms.append(mask.astype(masks.dtype)) areas.append(mask.sum()) areas = np.asarray(areas) index = np.argsort(-areas) ms = np.array(ms)[index] for i in range(len(segments)): mask = ms[i] * (i + 1) masks = masks + mask masks = np.clip(masks, a_min=0, a_max=i + 1) return masks, index def find_dataset_yaml(path: Path) -> Path: """ Find and return the YAML file associated with a Detect, Segment or Pose dataset. This function searches for a YAML file at the root level of the provided directory first, and if not found, it performs a recursive search. It prefers YAML files that have the same stem as the provided path. Args: path (Path): The directory path to search for the YAML file. Returns: (Path): The path of the found YAML file. """ files = list(path.glob("*.yaml")) or list(path.rglob("*.yaml")) # try root level first and then recursive assert files, f"No YAML file found in '{path.resolve()}'" if len(files) > 1: files = [f for f in files if f.stem == path.stem] # prefer *.yaml files that match assert len(files) == 1, f"Expected 1 YAML file in '{path.resolve()}', but found {len(files)}.\n{files}" return files[0] def check_det_dataset(dataset: str, autodownload: bool = True) -> Dict: """ Download, verify, and/or unzip a dataset if not found locally. This function checks the availability of a specified dataset, and if not found, it has the option to download and unzip the dataset. It then reads and parses the accompanying YAML data, ensuring key requirements are met and also resolves paths related to the dataset. Args: dataset (str): Path to the dataset or dataset descriptor (like a YAML file). autodownload (bool, optional): Whether to automatically download the dataset if not found. Returns: (Dict): Parsed dataset information and paths. """ file = check_file(dataset) # Download (optional) extract_dir = "" if zipfile.is_zipfile(file) or is_tarfile(file): new_dir = safe_download(file, dir=DATASETS_DIR, unzip=True, delete=False) file = find_dataset_yaml(DATASETS_DIR / new_dir) extract_dir, autodownload = file.parent, False # Read YAML data = YAML.load(file, append_filename=True) # dictionary # Checks for k in "train", "val": if k not in data: if k != "val" or "validation" not in data: raise SyntaxError( emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs.") ) LOGGER.warning("renaming data YAML 'validation' key to 'val' to match YOLO format.") data["val"] = data.pop("validation") # replace 'validation' key with 'val' key if "names" not in data and "nc" not in data: raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs.")) if "names" in data and "nc" in data and len(data["names"]) != data["nc"]: raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match.")) if "names" not in data: data["names"] = [f"class_{i}" for i in range(data["nc"])] else: data["nc"] = len(data["names"]) data["names"] = check_class_names(data["names"]) data["channels"] = data.get("channels", 3) # get image channels, default to 3 # Resolve paths path = Path(extract_dir or data.get("path") or Path(data.get("yaml_file", "")).parent) # dataset root if not path.exists() and not path.is_absolute(): path = (DATASETS_DIR / path).resolve() # path relative to DATASETS_DIR # Set paths data["path"] = path # download scripts for k in "train", "val", "test", "minival": if data.get(k): # prepend path if isinstance(data[k], str): x = (path / data[k]).resolve() if not x.exists() and data[k].startswith("../"): x = (path / data[k][3:]).resolve() data[k] = str(x) else: data[k] = [str((path / x).resolve()) for x in data[k]] # Parse YAML val, s = (data.get(x) for x in ("val", "download")) if val: val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path if not all(x.exists() for x in val): name = clean_url(dataset) # dataset name with URL auth stripped LOGGER.info("") m = f"Dataset '{name}' images not found, missing path '{[x for x in val if not x.exists()][0]}'" if s and autodownload: LOGGER.warning(m) else: m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_FILE}'" raise FileNotFoundError(m) t = time.time() r = None # success if s.startswith("http") and s.endswith(".zip"): # URL safe_download(url=s, dir=DATASETS_DIR, delete=True) elif s.startswith("bash "): # bash script LOGGER.info(f"Running {s} ...") r = os.system(s) else: # python script exec(s, {"yaml": data}) dt = f"({round(time.time() - t, 1)}s)" s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in {0, None} else f"failure {dt} ❌" LOGGER.info(f"Dataset download {s}\n") check_font("Arial.ttf" if is_ascii(data["names"]) else "Arial.Unicode.ttf") # download fonts return data # dictionary def check_cls_dataset(dataset: Union[str, Path], split: str = "") -> Dict: """ Check a classification dataset such as Imagenet. This function accepts a `dataset` name and attempts to retrieve the corresponding dataset information. If the dataset is not found locally, it attempts to download the dataset from the internet and save it locally. Args: dataset (str | Path): The name of the dataset. split (str, optional): The split of the dataset. Either 'val', 'test', or ''. Returns: (Dict): A dictionary containing the following keys: - 'train' (Path): The directory path containing the training set of the dataset. - 'val' (Path): The directory path containing the validation set of the dataset. - 'test' (Path): The directory path containing the test set of the dataset. - 'nc' (int): The number of classes in the dataset. - 'names' (Dict): A dictionary of class names in the dataset. """ # Download (optional if dataset=https://file.zip is passed directly) if str(dataset).startswith(("http:/", "https:/")): dataset = safe_download(dataset, dir=DATASETS_DIR, unzip=True, delete=False) elif str(dataset).endswith((".zip", ".tar", ".gz")): file = check_file(dataset) dataset = safe_download(file, dir=DATASETS_DIR, unzip=True, delete=False) dataset = Path(dataset) data_dir = (dataset if dataset.is_dir() else (DATASETS_DIR / dataset)).resolve() if not data_dir.is_dir(): LOGGER.info("") LOGGER.warning(f"Dataset not found, missing path {data_dir}, attempting download...") t = time.time() if str(dataset) == "imagenet": subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True) else: url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{dataset}.zip" download(url, dir=data_dir.parent) LOGGER.info(f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n") train_set = data_dir / "train" if not train_set.is_dir(): LOGGER.warning(f"Dataset 'split=train' not found at {train_set}") image_files = list(data_dir.rglob("*.jpg")) + list(data_dir.rglob("*.png")) if image_files: from ultralytics.data.split import split_classify_dataset LOGGER.info(f"Found {len(image_files)} images in subdirectories. Attempting to split...") data_dir = split_classify_dataset(data_dir, train_ratio=0.8) train_set = data_dir / "train" else: LOGGER.error(f"No images found in {data_dir} or its subdirectories.") val_set = ( data_dir / "val" if (data_dir / "val").exists() else data_dir / "validation" if (data_dir / "validation").exists() else None ) # data/test or data/val test_set = data_dir / "test" if (data_dir / "test").exists() else None # data/val or data/test if split == "val" and not val_set: LOGGER.warning("Dataset 'split=val' not found, using 'split=test' instead.") val_set = test_set elif split == "test" and not test_set: LOGGER.warning("Dataset 'split=test' not found, using 'split=val' instead.") test_set = val_set nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes names = [x.name for x in (data_dir / "train").iterdir() if x.is_dir()] # class names list names = dict(enumerate(sorted(names))) # Print to console for k, v in {"train": train_set, "val": val_set, "test": test_set}.items(): prefix = f"{colorstr(f'{k}:')} {v}..." if v is None: LOGGER.info(prefix) else: files = [path for path in v.rglob("*.*") if path.suffix[1:].lower() in IMG_FORMATS] nf = len(files) # number of files nd = len({file.parent for file in files}) # number of directories if nf == 0: if k == "train": raise FileNotFoundError(f"{dataset} '{k}:' no training images found") else: LOGGER.warning(f"{prefix} found {nf} images in {nd} classes (no images found)") elif nd != nc: LOGGER.error(f"{prefix} found {nf} images in {nd} classes (requires {nc} classes, not {nd})") else: LOGGER.info(f"{prefix} found {nf} images in {nd} classes ✅ ") return {"train": train_set, "val": val_set, "test": test_set, "nc": nc, "names": names, "channels": 3} class HUBDatasetStats: """ A class for generating HUB dataset JSON and `-hub` dataset directory. Args: path (str): Path to data.yaml or data.zip (with data.yaml inside data.zip). task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. autodownload (bool): Attempt to download dataset if not found locally. Attributes: task (str): Dataset task type. hub_dir (Path): Directory path for HUB dataset files. im_dir (Path): Directory path for compressed images. stats (Dict): Statistics dictionary containing dataset information. data (Dict): Dataset configuration data. Methods: get_json: Return dataset JSON for Ultralytics HUB. process_images: Compress images for Ultralytics HUB. Note: Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip. Examples: >>> from ultralytics.data.utils import HUBDatasetStats >>> stats = HUBDatasetStats("path/to/coco8.zip", task="detect") # detect dataset >>> stats = HUBDatasetStats("path/to/coco8-seg.zip", task="segment") # segment dataset >>> stats = HUBDatasetStats("path/to/coco8-pose.zip", task="pose") # pose dataset >>> stats = HUBDatasetStats("path/to/dota8.zip", task="obb") # OBB dataset >>> stats = HUBDatasetStats("path/to/imagenet10.zip", task="classify") # classification dataset >>> stats.get_json(save=True) >>> stats.process_images() """ def __init__(self, path: str = "coco8.yaml", task: str = "detect", autodownload: bool = False): """Initialize class.""" path = Path(path).resolve() LOGGER.info(f"Starting HUB dataset checks for {path}....") self.task = task # detect, segment, pose, classify, obb if self.task == "classify": unzip_dir = unzip_file(path) data = check_cls_dataset(unzip_dir) data["path"] = unzip_dir else: # detect, segment, pose, obb _, data_dir, yaml_path = self._unzip(Path(path)) try: # Load YAML with checks data = YAML.load(yaml_path) data["path"] = "" # strip path since YAML should be in dataset root for all HUB datasets YAML.save(yaml_path, data) data = check_det_dataset(yaml_path, autodownload) # dict data["path"] = data_dir # YAML path should be set to '' (relative) or parent (absolute) except Exception as e: raise Exception("error/HUB/dataset_stats/init") from e self.hub_dir = Path(f"{data['path']}-hub") self.im_dir = self.hub_dir / "images" self.stats = {"nc": len(data["names"]), "names": list(data["names"].values())} # statistics dictionary self.data = data @staticmethod def _unzip(path: Path) -> Tuple[bool, str, Path]: """Unzip data.zip.""" if not str(path).endswith(".zip"): # path is data.yaml return False, None, path unzip_dir = unzip_file(path, path=path.parent) assert unzip_dir.is_dir(), ( f"Error unzipping {path}, {unzip_dir} not found. path/to/abc.zip MUST unzip to path/to/abc/" ) return True, str(unzip_dir), find_dataset_yaml(unzip_dir) # zipped, data_dir, yaml_path def _hub_ops(self, f: str): """Save a compressed image for HUB previews.""" compress_one_image(f, self.im_dir / Path(f).name) # save to dataset-hub def get_json(self, save: bool = False, verbose: bool = False) -> Dict: """Return dataset JSON for Ultralytics HUB.""" def _round(labels): """Update labels to integer class and 4 decimal place floats.""" if self.task == "detect": coordinates = labels["bboxes"] elif self.task in {"segment", "obb"}: # Segment and OBB use segments. OBB segments are normalized xyxyxyxy coordinates = [x.flatten() for x in labels["segments"]] elif self.task == "pose": n, nk, nd = labels["keypoints"].shape coordinates = np.concatenate((labels["bboxes"], labels["keypoints"].reshape(n, nk * nd)), 1) else: raise ValueError(f"Undefined dataset task={self.task}.") zipped = zip(labels["cls"], coordinates) return [[int(c[0]), *(round(float(x), 4) for x in points)] for c, points in zipped] for split in "train", "val", "test": self.stats[split] = None # predefine path = self.data.get(split) # Check split if path is None: # no split continue files = [f for f in Path(path).rglob("*.*") if f.suffix[1:].lower() in IMG_FORMATS] # image files in split if not files: # no images continue # Get dataset statistics if self.task == "classify": from torchvision.datasets import ImageFolder # scope for faster 'import ultralytics' dataset = ImageFolder(self.data[split]) x = np.zeros(len(dataset.classes)).astype(int) for im in dataset.imgs: x[im[1]] += 1 self.stats[split] = { "instance_stats": {"total": len(dataset), "per_class": x.tolist()}, "image_stats": {"total": len(dataset), "unlabelled": 0, "per_class": x.tolist()}, "labels": [{Path(k).name: v} for k, v in dataset.imgs], } else: from ultralytics.data import YOLODataset dataset = YOLODataset(img_path=self.data[split], data=self.data, task=self.task) x = np.array( [ np.bincount(label["cls"].astype(int).flatten(), minlength=self.data["nc"]) for label in TQDM(dataset.labels, total=len(dataset), desc="Statistics") ] ) # shape(128x80) self.stats[split] = { "instance_stats": {"total": int(x.sum()), "per_class": x.sum(0).tolist()}, "image_stats": { "total": len(dataset), "unlabelled": int(np.all(x == 0, 1).sum()), "per_class": (x > 0).sum(0).tolist(), }, "labels": [{Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)], } # Save, print and return if save: self.hub_dir.mkdir(parents=True, exist_ok=True) # makes dataset-hub/ stats_path = self.hub_dir / "stats.json" LOGGER.info(f"Saving {stats_path.resolve()}...") with open(stats_path, "w", encoding="utf-8") as f: json.dump(self.stats, f) # save stats.json if verbose: LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False)) return self.stats def process_images(self) -> Path: """Compress images for Ultralytics HUB.""" from ultralytics.data import YOLODataset # ClassificationDataset self.im_dir.mkdir(parents=True, exist_ok=True) # makes dataset-hub/images/ for split in "train", "val", "test": if self.data.get(split) is None: continue dataset = YOLODataset(img_path=self.data[split], data=self.data) with ThreadPool(NUM_THREADS) as pool: for _ in TQDM(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f"{split} images"): pass LOGGER.info(f"Done. All images saved to {self.im_dir}") return self.im_dir def compress_one_image(f: str, f_new: str = None, max_dim: int = 1920, quality: int = 50): """ Compress a single image file to reduced size while preserving its aspect ratio and quality using either the Python Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will not be resized. Args: f (str): The path to the input image file. f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten. max_dim (int, optional): The maximum dimension (width or height) of the output image. quality (int, optional): The image compression quality as a percentage. Examples: >>> from pathlib import Path >>> from ultralytics.data.utils import compress_one_image >>> for f in Path("path/to/dataset").rglob("*.jpg"): >>> compress_one_image(f) """ try: # use PIL Image.MAX_IMAGE_PIXELS = None # Fix DecompressionBombError, allow optimization of image > ~178.9 million pixels im = Image.open(f) if im.mode in {"RGBA", "LA"}: # Convert to RGB if needed (for JPEG) im = im.convert("RGB") r = max_dim / max(im.height, im.width) # ratio if r < 1.0: # image too large im = im.resize((int(im.width * r), int(im.height * r))) im.save(f_new or f, "JPEG", quality=quality, optimize=True) # save except Exception as e: # use OpenCV LOGGER.warning(f"HUB ops PIL failure {f}: {e}") im = cv2.imread(f) im_height, im_width = im.shape[:2] r = max_dim / max(im_height, im_width) # ratio if r < 1.0: # image too large im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) cv2.imwrite(str(f_new or f), im) def load_dataset_cache_file(path: Path) -> Dict: """Load an Ultralytics *.cache dictionary from path.""" import gc gc.disable() # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585 cache = np.load(str(path), allow_pickle=True).item() # load dict gc.enable() return cache def save_dataset_cache_file(prefix: str, path: Path, x: Dict, version: str): """Save an Ultralytics dataset *.cache dictionary x to path.""" x["version"] = version # add cache version if is_dir_writeable(path.parent): if path.exists(): path.unlink() # remove *.cache file if exists with open(str(path), "wb") as file: # context manager here fixes windows async np.save bug np.save(file, x) LOGGER.info(f"{prefix}New cache created: {path}") else: LOGGER.warning(f"{prefix}Cache directory {path.parent} is not writeable, cache not saved.")