# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license """Block modules.""" from typing import List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from ultralytics.utils.torch_utils import fuse_conv_and_bn from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad from .transformer import TransformerBlock __all__ = ( "DFL", "HGBlock", "HGStem", "SPP", "SPPF", "C1", "C2", "C3", "C2f", "C2fAttn", "ImagePoolingAttn", "ContrastiveHead", "BNContrastiveHead", "C3x", "C3TR", "C3Ghost", "GhostBottleneck", "Bottleneck", "BottleneckCSP", "Proto", "RepC3", "ResNetLayer", "RepNCSPELAN4", "ELAN1", "ADown", "AConv", "SPPELAN", "CBFuse", "CBLinear", "C3k2", "C2fPSA", "C2PSA", "RepVGGDW", "CIB", "C2fCIB", "Attention", "PSA", "SCDown", "TorchVision", ) class DFL(nn.Module): """ Integral module of Distribution Focal Loss (DFL). Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 """ def __init__(self, c1: int = 16): """ Initialize a convolutional layer with a given number of input channels. Args: c1 (int): Number of input channels. """ super().__init__() self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False) x = torch.arange(c1, dtype=torch.float) self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1)) self.c1 = c1 def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply the DFL module to input tensor and return transformed output.""" b, _, a = x.shape # batch, channels, anchors return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a) # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a) class Proto(nn.Module): """Ultralytics YOLO models mask Proto module for segmentation models.""" def __init__(self, c1: int, c_: int = 256, c2: int = 32): """ Initialize the Ultralytics YOLO models mask Proto module with specified number of protos and masks. Args: c1 (int): Input channels. c_ (int): Intermediate channels. c2 (int): Output channels (number of protos). """ super().__init__() self.cv1 = Conv(c1, c_, k=3) self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest') self.cv2 = Conv(c_, c_, k=3) self.cv3 = Conv(c_, c2) def forward(self, x: torch.Tensor) -> torch.Tensor: """Perform a forward pass through layers using an upsampled input image.""" return self.cv3(self.cv2(self.upsample(self.cv1(x)))) class HGStem(nn.Module): """ StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d. https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py """ def __init__(self, c1: int, cm: int, c2: int): """ Initialize the StemBlock of PPHGNetV2. Args: c1 (int): Input channels. cm (int): Middle channels. c2 (int): Output channels. """ super().__init__() self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU()) self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU()) self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU()) self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU()) self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU()) self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass of a PPHGNetV2 backbone layer.""" x = self.stem1(x) x = F.pad(x, [0, 1, 0, 1]) x2 = self.stem2a(x) x2 = F.pad(x2, [0, 1, 0, 1]) x2 = self.stem2b(x2) x1 = self.pool(x) x = torch.cat([x1, x2], dim=1) x = self.stem3(x) x = self.stem4(x) return x class HGBlock(nn.Module): """ HG_Block of PPHGNetV2 with 2 convolutions and LightConv. https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py """ def __init__( self, c1: int, cm: int, c2: int, k: int = 3, n: int = 6, lightconv: bool = False, shortcut: bool = False, act: nn.Module = nn.ReLU(), ): """ Initialize HGBlock with specified parameters. Args: c1 (int): Input channels. cm (int): Middle channels. c2 (int): Output channels. k (int): Kernel size. n (int): Number of LightConv or Conv blocks. lightconv (bool): Whether to use LightConv. shortcut (bool): Whether to use shortcut connection. act (nn.Module): Activation function. """ super().__init__() block = LightConv if lightconv else Conv self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n)) self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv self.add = shortcut and c1 == c2 def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass of a PPHGNetV2 backbone layer.""" y = [x] y.extend(m(y[-1]) for m in self.m) y = self.ec(self.sc(torch.cat(y, 1))) return y + x if self.add else y class SPP(nn.Module): """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729.""" def __init__(self, c1: int, c2: int, k: Tuple[int, ...] = (5, 9, 13)): """ Initialize the SPP layer with input/output channels and pooling kernel sizes. Args: c1 (int): Input channels. c2 (int): Output channels. k (tuple): Kernel sizes for max pooling. """ super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass of the SPP layer, performing spatial pyramid pooling.""" x = self.cv1(x) return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class SPPF(nn.Module): """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher.""" def __init__(self, c1: int, c2: int, k: int = 5): """ Initialize the SPPF layer with given input/output channels and kernel size. Args: c1 (int): Input channels. c2 (int): Output channels. k (int): Kernel size. Notes: This module is equivalent to SPP(k=(5, 9, 13)). """ super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply sequential pooling operations to input and return concatenated feature maps.""" y = [self.cv1(x)] y.extend(self.m(y[-1]) for _ in range(3)) return self.cv2(torch.cat(y, 1)) class C1(nn.Module): """CSP Bottleneck with 1 convolution.""" def __init__(self, c1: int, c2: int, n: int = 1): """ Initialize the CSP Bottleneck with 1 convolution. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of convolutions. """ super().__init__() self.cv1 = Conv(c1, c2, 1, 1) self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n))) def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply convolution and residual connection to input tensor.""" y = self.cv1(x) return self.m(y) + y class C2(nn.Module): """CSP Bottleneck with 2 convolutions.""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5): """ Initialize a CSP Bottleneck with 2 convolutions. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Bottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__() self.c = int(c2 * e) # hidden channels self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2) # self.attention = ChannelAttention(2 * self.c) # or SpatialAttention() self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through the CSP bottleneck with 2 convolutions.""" a, b = self.cv1(x).chunk(2, 1) return self.cv2(torch.cat((self.m(a), b), 1)) class C2f(nn.Module): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5): """ Initialize a CSP bottleneck with 2 convolutions. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Bottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__() self.c = int(c2 * e) # hidden channels self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2) self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through C2f layer.""" y = list(self.cv1(x).chunk(2, 1)) y.extend(m(y[-1]) for m in self.m) return self.cv2(torch.cat(y, 1)) def forward_split(self, x: torch.Tensor) -> torch.Tensor: """Forward pass using split() instead of chunk().""" y = self.cv1(x).split((self.c, self.c), 1) y = [y[0], y[1]] y.extend(m(y[-1]) for m in self.m) return self.cv2(torch.cat(y, 1)) class C3(nn.Module): """CSP Bottleneck with 3 convolutions.""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5): """ Initialize the CSP Bottleneck with 3 convolutions. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Bottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n))) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through the CSP bottleneck with 3 convolutions.""" return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) class C3x(C3): """C3 module with cross-convolutions.""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5): """ Initialize C3 module with cross-convolutions. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Bottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__(c1, c2, n, shortcut, g, e) self.c_ = int(c2 * e) self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n))) class RepC3(nn.Module): """Rep C3.""" def __init__(self, c1: int, c2: int, n: int = 3, e: float = 1.0): """ Initialize CSP Bottleneck with a single convolution. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of RepConv blocks. e (float): Expansion ratio. """ super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)]) self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass of RepC3 module.""" return self.cv3(self.m(self.cv1(x)) + self.cv2(x)) class C3TR(C3): """C3 module with TransformerBlock().""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5): """ Initialize C3 module with TransformerBlock. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Transformer blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) self.m = TransformerBlock(c_, c_, 4, n) class C3Ghost(C3): """C3 module with GhostBottleneck().""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5): """ Initialize C3 module with GhostBottleneck. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Ghost bottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) class GhostBottleneck(nn.Module): """Ghost Bottleneck https://github.com/huawei-noah/Efficient-AI-Backbones.""" def __init__(self, c1: int, c2: int, k: int = 3, s: int = 1): """ Initialize Ghost Bottleneck module. Args: c1 (int): Input channels. c2 (int): Output channels. k (int): Kernel size. s (int): Stride. """ super().__init__() c_ = c2 // 2 self.conv = nn.Sequential( GhostConv(c1, c_, 1, 1), # pw DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw GhostConv(c_, c2, 1, 1, act=False), # pw-linear ) self.shortcut = ( nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() ) def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply skip connection and concatenation to input tensor.""" return self.conv(x) + self.shortcut(x) class Bottleneck(nn.Module): """Standard bottleneck.""" def __init__( self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: Tuple[int, int] = (3, 3), e: float = 0.5 ): """ Initialize a standard bottleneck module. Args: c1 (int): Input channels. c2 (int): Output channels. shortcut (bool): Whether to use shortcut connection. g (int): Groups for convolutions. k (tuple): Kernel sizes for convolutions. e (float): Expansion ratio. """ super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, k[0], 1) self.cv2 = Conv(c_, c2, k[1], 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply bottleneck with optional shortcut connection.""" return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class BottleneckCSP(nn.Module): """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks.""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5): """ Initialize CSP Bottleneck. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Bottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) self.cv4 = Conv(2 * c_, c2, 1, 1) self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) self.act = nn.SiLU() self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply CSP bottleneck with 3 convolutions.""" y1 = self.cv3(self.m(self.cv1(x))) y2 = self.cv2(x) return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) class ResNetBlock(nn.Module): """ResNet block with standard convolution layers.""" def __init__(self, c1: int, c2: int, s: int = 1, e: int = 4): """ Initialize ResNet block. Args: c1 (int): Input channels. c2 (int): Output channels. s (int): Stride. e (int): Expansion ratio. """ super().__init__() c3 = e * c2 self.cv1 = Conv(c1, c2, k=1, s=1, act=True) self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True) self.cv3 = Conv(c2, c3, k=1, act=False) self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through the ResNet block.""" return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x)) class ResNetLayer(nn.Module): """ResNet layer with multiple ResNet blocks.""" def __init__(self, c1: int, c2: int, s: int = 1, is_first: bool = False, n: int = 1, e: int = 4): """ Initialize ResNet layer. Args: c1 (int): Input channels. c2 (int): Output channels. s (int): Stride. is_first (bool): Whether this is the first layer. n (int): Number of ResNet blocks. e (int): Expansion ratio. """ super().__init__() self.is_first = is_first if self.is_first: self.layer = nn.Sequential( Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) else: blocks = [ResNetBlock(c1, c2, s, e=e)] blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)]) self.layer = nn.Sequential(*blocks) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through the ResNet layer.""" return self.layer(x) class MaxSigmoidAttnBlock(nn.Module): """Max Sigmoid attention block.""" def __init__(self, c1: int, c2: int, nh: int = 1, ec: int = 128, gc: int = 512, scale: bool = False): """ Initialize MaxSigmoidAttnBlock. Args: c1 (int): Input channels. c2 (int): Output channels. nh (int): Number of heads. ec (int): Embedding channels. gc (int): Guide channels. scale (bool): Whether to use learnable scale parameter. """ super().__init__() self.nh = nh self.hc = c2 // nh self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None self.gl = nn.Linear(gc, ec) self.bias = nn.Parameter(torch.zeros(nh)) self.proj_conv = Conv(c1, c2, k=3, s=1, act=False) self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0 def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor: """ Forward pass of MaxSigmoidAttnBlock. Args: x (torch.Tensor): Input tensor. guide (torch.Tensor): Guide tensor. Returns: (torch.Tensor): Output tensor after attention. """ bs, _, h, w = x.shape guide = self.gl(guide) guide = guide.view(bs, guide.shape[1], self.nh, self.hc) embed = self.ec(x) if self.ec is not None else x embed = embed.view(bs, self.nh, self.hc, h, w) aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide) aw = aw.max(dim=-1)[0] aw = aw / (self.hc**0.5) aw = aw + self.bias[None, :, None, None] aw = aw.sigmoid() * self.scale x = self.proj_conv(x) x = x.view(bs, self.nh, -1, h, w) x = x * aw.unsqueeze(2) return x.view(bs, -1, h, w) class C2fAttn(nn.Module): """C2f module with an additional attn module.""" def __init__( self, c1: int, c2: int, n: int = 1, ec: int = 128, nh: int = 1, gc: int = 512, shortcut: bool = False, g: int = 1, e: float = 0.5, ): """ Initialize C2f module with attention mechanism. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Bottleneck blocks. ec (int): Embedding channels for attention. nh (int): Number of heads for attention. gc (int): Guide channels for attention. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__() self.c = int(c2 * e) # hidden channels self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv((3 + n) * self.c, c2, 1) # optional act=FReLU(c2) self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh) def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor: """ Forward pass through C2f layer with attention. Args: x (torch.Tensor): Input tensor. guide (torch.Tensor): Guide tensor for attention. Returns: (torch.Tensor): Output tensor after processing. """ y = list(self.cv1(x).chunk(2, 1)) y.extend(m(y[-1]) for m in self.m) y.append(self.attn(y[-1], guide)) return self.cv2(torch.cat(y, 1)) def forward_split(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor: """ Forward pass using split() instead of chunk(). Args: x (torch.Tensor): Input tensor. guide (torch.Tensor): Guide tensor for attention. Returns: (torch.Tensor): Output tensor after processing. """ y = list(self.cv1(x).split((self.c, self.c), 1)) y.extend(m(y[-1]) for m in self.m) y.append(self.attn(y[-1], guide)) return self.cv2(torch.cat(y, 1)) class ImagePoolingAttn(nn.Module): """ImagePoolingAttn: Enhance the text embeddings with image-aware information.""" def __init__( self, ec: int = 256, ch: Tuple[int, ...] = (), ct: int = 512, nh: int = 8, k: int = 3, scale: bool = False ): """ Initialize ImagePoolingAttn module. Args: ec (int): Embedding channels. ch (tuple): Channel dimensions for feature maps. ct (int): Channel dimension for text embeddings. nh (int): Number of attention heads. k (int): Kernel size for pooling. scale (bool): Whether to use learnable scale parameter. """ super().__init__() nf = len(ch) self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec)) self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec)) self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec)) self.proj = nn.Linear(ec, ct) self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0 self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch]) self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)]) self.ec = ec self.nh = nh self.nf = nf self.hc = ec // nh self.k = k def forward(self, x: List[torch.Tensor], text: torch.Tensor) -> torch.Tensor: """ Forward pass of ImagePoolingAttn. Args: x (List[torch.Tensor]): List of input feature maps. text (torch.Tensor): Text embeddings. Returns: (torch.Tensor): Enhanced text embeddings. """ bs = x[0].shape[0] assert len(x) == self.nf num_patches = self.k**2 x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)] x = torch.cat(x, dim=-1).transpose(1, 2) q = self.query(text) k = self.key(x) v = self.value(x) # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1) q = q.reshape(bs, -1, self.nh, self.hc) k = k.reshape(bs, -1, self.nh, self.hc) v = v.reshape(bs, -1, self.nh, self.hc) aw = torch.einsum("bnmc,bkmc->bmnk", q, k) aw = aw / (self.hc**0.5) aw = F.softmax(aw, dim=-1) x = torch.einsum("bmnk,bkmc->bnmc", aw, v) x = self.proj(x.reshape(bs, -1, self.ec)) return x * self.scale + text class ContrastiveHead(nn.Module): """Implements contrastive learning head for region-text similarity in vision-language models.""" def __init__(self): """Initialize ContrastiveHead with region-text similarity parameters.""" super().__init__() # NOTE: use -10.0 to keep the init cls loss consistency with other losses self.bias = nn.Parameter(torch.tensor([-10.0])) self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log()) def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor: """ Forward function of contrastive learning. Args: x (torch.Tensor): Image features. w (torch.Tensor): Text features. Returns: (torch.Tensor): Similarity scores. """ x = F.normalize(x, dim=1, p=2) w = F.normalize(w, dim=-1, p=2) x = torch.einsum("bchw,bkc->bkhw", x, w) return x * self.logit_scale.exp() + self.bias class BNContrastiveHead(nn.Module): """ Batch Norm Contrastive Head using batch norm instead of l2-normalization. Args: embed_dims (int): Embed dimensions of text and image features. """ def __init__(self, embed_dims: int): """ Initialize BNContrastiveHead. Args: embed_dims (int): Embedding dimensions for features. """ super().__init__() self.norm = nn.BatchNorm2d(embed_dims) # NOTE: use -10.0 to keep the init cls loss consistency with other losses self.bias = nn.Parameter(torch.tensor([-10.0])) # use -1.0 is more stable self.logit_scale = nn.Parameter(-1.0 * torch.ones([])) def fuse(self): """Fuse the batch normalization layer in the BNContrastiveHead module.""" del self.norm del self.bias del self.logit_scale self.forward = self.forward_fuse def forward_fuse(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor: """Passes input out unchanged.""" return x def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor: """ Forward function of contrastive learning with batch normalization. Args: x (torch.Tensor): Image features. w (torch.Tensor): Text features. Returns: (torch.Tensor): Similarity scores. """ x = self.norm(x) w = F.normalize(w, dim=-1, p=2) x = torch.einsum("bchw,bkc->bkhw", x, w) return x * self.logit_scale.exp() + self.bias class RepBottleneck(Bottleneck): """Rep bottleneck.""" def __init__( self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: Tuple[int, int] = (3, 3), e: float = 0.5 ): """ Initialize RepBottleneck. Args: c1 (int): Input channels. c2 (int): Output channels. shortcut (bool): Whether to use shortcut connection. g (int): Groups for convolutions. k (tuple): Kernel sizes for convolutions. e (float): Expansion ratio. """ super().__init__(c1, c2, shortcut, g, k, e) c_ = int(c2 * e) # hidden channels self.cv1 = RepConv(c1, c_, k[0], 1) class RepCSP(C3): """Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction.""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5): """ Initialize RepCSP layer. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of RepBottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) class RepNCSPELAN4(nn.Module): """CSP-ELAN.""" def __init__(self, c1: int, c2: int, c3: int, c4: int, n: int = 1): """ Initialize CSP-ELAN layer. Args: c1 (int): Input channels. c2 (int): Output channels. c3 (int): Intermediate channels. c4 (int): Intermediate channels for RepCSP. n (int): Number of RepCSP blocks. """ super().__init__() self.c = c3 // 2 self.cv1 = Conv(c1, c3, 1, 1) self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1)) self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1)) self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through RepNCSPELAN4 layer.""" y = list(self.cv1(x).chunk(2, 1)) y.extend((m(y[-1])) for m in [self.cv2, self.cv3]) return self.cv4(torch.cat(y, 1)) def forward_split(self, x: torch.Tensor) -> torch.Tensor: """Forward pass using split() instead of chunk().""" y = list(self.cv1(x).split((self.c, self.c), 1)) y.extend(m(y[-1]) for m in [self.cv2, self.cv3]) return self.cv4(torch.cat(y, 1)) class ELAN1(RepNCSPELAN4): """ELAN1 module with 4 convolutions.""" def __init__(self, c1: int, c2: int, c3: int, c4: int): """ Initialize ELAN1 layer. Args: c1 (int): Input channels. c2 (int): Output channels. c3 (int): Intermediate channels. c4 (int): Intermediate channels for convolutions. """ super().__init__(c1, c2, c3, c4) self.c = c3 // 2 self.cv1 = Conv(c1, c3, 1, 1) self.cv2 = Conv(c3 // 2, c4, 3, 1) self.cv3 = Conv(c4, c4, 3, 1) self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1) class AConv(nn.Module): """AConv.""" def __init__(self, c1: int, c2: int): """ Initialize AConv module. Args: c1 (int): Input channels. c2 (int): Output channels. """ super().__init__() self.cv1 = Conv(c1, c2, 3, 2, 1) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through AConv layer.""" x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True) return self.cv1(x) class ADown(nn.Module): """ADown.""" def __init__(self, c1: int, c2: int): """ Initialize ADown module. Args: c1 (int): Input channels. c2 (int): Output channels. """ super().__init__() self.c = c2 // 2 self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1) self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through ADown layer.""" x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True) x1, x2 = x.chunk(2, 1) x1 = self.cv1(x1) x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1) x2 = self.cv2(x2) return torch.cat((x1, x2), 1) class SPPELAN(nn.Module): """SPP-ELAN.""" def __init__(self, c1: int, c2: int, c3: int, k: int = 5): """ Initialize SPP-ELAN block. Args: c1 (int): Input channels. c2 (int): Output channels. c3 (int): Intermediate channels. k (int): Kernel size for max pooling. """ super().__init__() self.c = c3 self.cv1 = Conv(c1, c3, 1, 1) self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.cv5 = Conv(4 * c3, c2, 1, 1) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through SPPELAN layer.""" y = [self.cv1(x)] y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4]) return self.cv5(torch.cat(y, 1)) class CBLinear(nn.Module): """CBLinear.""" def __init__(self, c1: int, c2s: List[int], k: int = 1, s: int = 1, p: Optional[int] = None, g: int = 1): """ Initialize CBLinear module. Args: c1 (int): Input channels. c2s (List[int]): List of output channel sizes. k (int): Kernel size. s (int): Stride. p (int | None): Padding. g (int): Groups. """ super().__init__() self.c2s = c2s self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: """Forward pass through CBLinear layer.""" return self.conv(x).split(self.c2s, dim=1) class CBFuse(nn.Module): """CBFuse.""" def __init__(self, idx: List[int]): """ Initialize CBFuse module. Args: idx (List[int]): Indices for feature selection. """ super().__init__() self.idx = idx def forward(self, xs: List[torch.Tensor]) -> torch.Tensor: """ Forward pass through CBFuse layer. Args: xs (List[torch.Tensor]): List of input tensors. Returns: (torch.Tensor): Fused output tensor. """ target_size = xs[-1].shape[2:] res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])] return torch.sum(torch.stack(res + xs[-1:]), dim=0) class C3f(nn.Module): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5): """ Initialize CSP bottleneck layer with two convolutions. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Bottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv((2 + n) * c_, c2, 1) # optional act=FReLU(c2) self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through C3f layer.""" y = [self.cv2(x), self.cv1(x)] y.extend(m(y[-1]) for m in self.m) return self.cv3(torch.cat(y, 1)) class C3k2(C2f): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__( self, c1: int, c2: int, n: int = 1, c3k: bool = False, e: float = 0.5, g: int = 1, shortcut: bool = True ): """ Initialize C3k2 module. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of blocks. c3k (bool): Whether to use C3k blocks. e (float): Expansion ratio. g (int): Groups for convolutions. shortcut (bool): Whether to use shortcut connections. """ super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList( C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n) ) class C3k(C3): """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.""" def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5, k: int = 3): """ Initialize C3k module. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of Bottleneck blocks. shortcut (bool): Whether to use shortcut connections. g (int): Groups for convolutions. e (float): Expansion ratio. k (int): Kernel size. """ super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) class RepVGGDW(torch.nn.Module): """RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture.""" def __init__(self, ed: int) -> None: """ Initialize RepVGGDW module. Args: ed (int): Input and output channels. """ super().__init__() self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False) self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False) self.dim = ed self.act = nn.SiLU() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Perform a forward pass of the RepVGGDW block. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after applying the depth wise separable convolution. """ return self.act(self.conv(x) + self.conv1(x)) def forward_fuse(self, x: torch.Tensor) -> torch.Tensor: """ Perform a forward pass of the RepVGGDW block without fusing the convolutions. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after applying the depth wise separable convolution. """ return self.act(self.conv(x)) @torch.no_grad() def fuse(self): """ Fuse the convolutional layers in the RepVGGDW block. This method fuses the convolutional layers and updates the weights and biases accordingly. """ conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn) conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn) conv_w = conv.weight conv_b = conv.bias conv1_w = conv1.weight conv1_b = conv1.bias conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2]) final_conv_w = conv_w + conv1_w final_conv_b = conv_b + conv1_b conv.weight.data.copy_(final_conv_w) conv.bias.data.copy_(final_conv_b) self.conv = conv del self.conv1 class CIB(nn.Module): """ Conditional Identity Block (CIB) module. Args: c1 (int): Number of input channels. c2 (int): Number of output channels. shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True. e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5. lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False. """ def __init__(self, c1: int, c2: int, shortcut: bool = True, e: float = 0.5, lk: bool = False): """ Initialize the CIB module. Args: c1 (int): Input channels. c2 (int): Output channels. shortcut (bool): Whether to use shortcut connection. e (float): Expansion ratio. lk (bool): Whether to use RepVGGDW. """ super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = nn.Sequential( Conv(c1, c1, 3, g=c1), Conv(c1, 2 * c_, 1), RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_), Conv(2 * c_, c2, 1), Conv(c2, c2, 3, g=c2), ) self.add = shortcut and c1 == c2 def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass of the CIB module. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor. """ return x + self.cv1(x) if self.add else self.cv1(x) class C2fCIB(C2f): """ C2fCIB class represents a convolutional block with C2f and CIB modules. Args: c1 (int): Number of input channels. c2 (int): Number of output channels. n (int, optional): Number of CIB modules to stack. Defaults to 1. shortcut (bool, optional): Whether to use shortcut connection. Defaults to False. lk (bool, optional): Whether to use local key connection. Defaults to False. g (int, optional): Number of groups for grouped convolution. Defaults to 1. e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5. """ def __init__( self, c1: int, c2: int, n: int = 1, shortcut: bool = False, lk: bool = False, g: int = 1, e: float = 0.5 ): """ Initialize C2fCIB module. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of CIB modules. shortcut (bool): Whether to use shortcut connection. lk (bool): Whether to use local key connection. g (int): Groups for convolutions. e (float): Expansion ratio. """ super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n)) class Attention(nn.Module): """ Attention module that performs self-attention on the input tensor. Args: dim (int): The input tensor dimension. num_heads (int): The number of attention heads. attn_ratio (float): The ratio of the attention key dimension to the head dimension. Attributes: num_heads (int): The number of attention heads. head_dim (int): The dimension of each attention head. key_dim (int): The dimension of the attention key. scale (float): The scaling factor for the attention scores. qkv (Conv): Convolutional layer for computing the query, key, and value. proj (Conv): Convolutional layer for projecting the attended values. pe (Conv): Convolutional layer for positional encoding. """ def __init__(self, dim: int, num_heads: int = 8, attn_ratio: float = 0.5): """ Initialize multi-head attention module. Args: dim (int): Input dimension. num_heads (int): Number of attention heads. attn_ratio (float): Attention ratio for key dimension. """ super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.key_dim = int(self.head_dim * attn_ratio) self.scale = self.key_dim**-0.5 nh_kd = self.key_dim * num_heads h = dim + nh_kd * 2 self.qkv = Conv(dim, h, 1, act=False) self.proj = Conv(dim, dim, 1, act=False) self.pe = Conv(dim, dim, 3, 1, g=dim, act=False) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass of the Attention module. Args: x (torch.Tensor): The input tensor. Returns: (torch.Tensor): The output tensor after self-attention. """ B, C, H, W = x.shape N = H * W qkv = self.qkv(x) q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split( [self.key_dim, self.key_dim, self.head_dim], dim=2 ) attn = (q.transpose(-2, -1) @ k) * self.scale attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W)) x = self.proj(x) return x class PSABlock(nn.Module): """ PSABlock class implementing a Position-Sensitive Attention block for neural networks. This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers with optional shortcut connections. Attributes: attn (Attention): Multi-head attention module. ffn (nn.Sequential): Feed-forward neural network module. add (bool): Flag indicating whether to add shortcut connections. Methods: forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers. Examples: Create a PSABlock and perform a forward pass >>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True) >>> input_tensor = torch.randn(1, 128, 32, 32) >>> output_tensor = psablock(input_tensor) """ def __init__(self, c: int, attn_ratio: float = 0.5, num_heads: int = 4, shortcut: bool = True) -> None: """ Initialize the PSABlock. Args: c (int): Input and output channels. attn_ratio (float): Attention ratio for key dimension. num_heads (int): Number of attention heads. shortcut (bool): Whether to use shortcut connections. """ super().__init__() self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads) self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False)) self.add = shortcut def forward(self, x: torch.Tensor) -> torch.Tensor: """ Execute a forward pass through PSABlock. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after attention and feed-forward processing. """ x = x + self.attn(x) if self.add else self.attn(x) x = x + self.ffn(x) if self.add else self.ffn(x) return x class PSA(nn.Module): """ PSA class for implementing Position-Sensitive Attention in neural networks. This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to input tensors, enhancing feature extraction and processing capabilities. Attributes: c (int): Number of hidden channels after applying the initial convolution. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. attn (Attention): Attention module for position-sensitive attention. ffn (nn.Sequential): Feed-forward network for further processing. Methods: forward: Applies position-sensitive attention and feed-forward network to the input tensor. Examples: Create a PSA module and apply it to an input tensor >>> psa = PSA(c1=128, c2=128, e=0.5) >>> input_tensor = torch.randn(1, 128, 64, 64) >>> output_tensor = psa.forward(input_tensor) """ def __init__(self, c1: int, c2: int, e: float = 0.5): """ Initialize PSA module. Args: c1 (int): Input channels. c2 (int): Output channels. e (float): Expansion ratio. """ super().__init__() assert c1 == c2 self.c = int(c1 * e) self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c1, 1) self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64) self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False)) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Execute forward pass in PSA module. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after attention and feed-forward processing. """ a, b = self.cv1(x).split((self.c, self.c), dim=1) b = b + self.attn(b) b = b + self.ffn(b) return self.cv2(torch.cat((a, b), 1)) class C2PSA(nn.Module): """ C2PSA module with attention mechanism for enhanced feature extraction and processing. This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations. Attributes: c (int): Number of hidden channels. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations. Methods: forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations. Notes: This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules. Examples: >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5) >>> input_tensor = torch.randn(1, 256, 64, 64) >>> output_tensor = c2psa(input_tensor) """ def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5): """ Initialize C2PSA module. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of PSABlock modules. e (float): Expansion ratio. """ super().__init__() assert c1 == c2 self.c = int(c1 * e) self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c1, 1) self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Process the input tensor through a series of PSA blocks. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after processing. """ a, b = self.cv1(x).split((self.c, self.c), dim=1) b = self.m(b) return self.cv2(torch.cat((a, b), 1)) class C2fPSA(C2f): """ C2fPSA module with enhanced feature extraction using PSA blocks. This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction. Attributes: c (int): Number of hidden channels. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. m (nn.ModuleList): List of PSA blocks for feature extraction. Methods: forward: Performs a forward pass through the C2fPSA module. forward_split: Performs a forward pass using split() instead of chunk(). Examples: >>> import torch >>> from ultralytics.models.common import C2fPSA >>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5) >>> x = torch.randn(1, 64, 128, 128) >>> output = model(x) >>> print(output.shape) """ def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5): """ Initialize C2fPSA module. Args: c1 (int): Input channels. c2 (int): Output channels. n (int): Number of PSABlock modules. e (float): Expansion ratio. """ assert c1 == c2 super().__init__(c1, c2, n=n, e=e) self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)) class SCDown(nn.Module): """ SCDown module for downsampling with separable convolutions. This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information. Attributes: cv1 (Conv): Pointwise convolution layer that reduces the number of channels. cv2 (Conv): Depthwise convolution layer that performs spatial downsampling. Methods: forward: Applies the SCDown module to the input tensor. Examples: >>> import torch >>> from ultralytics import SCDown >>> model = SCDown(c1=64, c2=128, k=3, s=2) >>> x = torch.randn(1, 64, 128, 128) >>> y = model(x) >>> print(y.shape) torch.Size([1, 128, 64, 64]) """ def __init__(self, c1: int, c2: int, k: int, s: int): """ Initialize SCDown module. Args: c1 (int): Input channels. c2 (int): Output channels. k (int): Kernel size. s (int): Stride. """ super().__init__() self.cv1 = Conv(c1, c2, 1, 1) self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Apply convolution and downsampling to the input tensor. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Downsampled output tensor. """ return self.cv2(self.cv1(x)) class TorchVision(nn.Module): """ TorchVision module to allow loading any torchvision model. This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and customize the model by truncating or unwrapping layers. Attributes: m (nn.Module): The loaded torchvision model, possibly truncated and unwrapped. Args: model (str): Name of the torchvision model to load. weights (str, optional): Pre-trained weights to load. Default is "DEFAULT". unwrap (bool, optional): If True, unwraps the model to a sequential containing all but the last `truncate` layers. Default is True. truncate (int, optional): Number of layers to truncate from the end if `unwrap` is True. Default is 2. split (bool, optional): Returns output from intermediate child modules as list. Default is False. """ def __init__( self, model: str, weights: str = "DEFAULT", unwrap: bool = True, truncate: int = 2, split: bool = False ): """ Load the model and weights from torchvision. Args: model (str): Name of the torchvision model to load. weights (str): Pre-trained weights to load. unwrap (bool): Whether to unwrap the model. truncate (int): Number of layers to truncate. split (bool): Whether to split the output. """ import torchvision # scope for faster 'import ultralytics' super().__init__() if hasattr(torchvision.models, "get_model"): self.m = torchvision.models.get_model(model, weights=weights) else: self.m = torchvision.models.__dict__[model](pretrained=bool(weights)) if unwrap: layers = list(self.m.children()) if isinstance(layers[0], nn.Sequential): # Second-level for some models like EfficientNet, Swin layers = [*list(layers[0].children()), *layers[1:]] self.m = nn.Sequential(*(layers[:-truncate] if truncate else layers)) self.split = split else: self.split = False self.m.head = self.m.heads = nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass through the model. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor | List[torch.Tensor]): Output tensor or list of tensors. """ if self.split: y = [x] y.extend(m(y[-1]) for m in self.m) else: y = self.m(x) return y class AAttn(nn.Module): """ Area-attention module for YOLO models, providing efficient attention mechanisms. This module implements an area-based attention mechanism that processes input features in a spatially-aware manner, making it particularly effective for object detection tasks. Attributes: area (int): Number of areas the feature map is divided. num_heads (int): Number of heads into which the attention mechanism is divided. head_dim (int): Dimension of each attention head. qkv (Conv): Convolution layer for computing query, key and value tensors. proj (Conv): Projection convolution layer. pe (Conv): Position encoding convolution layer. Methods: forward: Applies area-attention to input tensor. Examples: >>> attn = AAttn(dim=256, num_heads=8, area=4) >>> x = torch.randn(1, 256, 32, 32) >>> output = attn(x) >>> print(output.shape) torch.Size([1, 256, 32, 32]) """ def __init__(self, dim: int, num_heads: int, area: int = 1): """ Initialize an Area-attention module for YOLO models. Args: dim (int): Number of hidden channels. num_heads (int): Number of heads into which the attention mechanism is divided. area (int): Number of areas the feature map is divided. """ super().__init__() self.area = area self.num_heads = num_heads self.head_dim = head_dim = dim // num_heads all_head_dim = head_dim * self.num_heads self.qkv = Conv(dim, all_head_dim * 3, 1, act=False) self.proj = Conv(all_head_dim, dim, 1, act=False) self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Process the input tensor through the area-attention. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after area-attention. """ B, C, H, W = x.shape N = H * W qkv = self.qkv(x).flatten(2).transpose(1, 2) if self.area > 1: qkv = qkv.reshape(B * self.area, N // self.area, C * 3) B, N, _ = qkv.shape q, k, v = ( qkv.view(B, N, self.num_heads, self.head_dim * 3) .permute(0, 2, 3, 1) .split([self.head_dim, self.head_dim, self.head_dim], dim=2) ) attn = (q.transpose(-2, -1) @ k) * (self.head_dim**-0.5) attn = attn.softmax(dim=-1) x = v @ attn.transpose(-2, -1) x = x.permute(0, 3, 1, 2) v = v.permute(0, 3, 1, 2) if self.area > 1: x = x.reshape(B // self.area, N * self.area, C) v = v.reshape(B // self.area, N * self.area, C) B, N, _ = x.shape x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous() v = v.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous() x = x + self.pe(v) return self.proj(x) class ABlock(nn.Module): """ Area-attention block module for efficient feature extraction in YOLO models. This module implements an area-attention mechanism combined with a feed-forward network for processing feature maps. It uses a novel area-based attention approach that is more efficient than traditional self-attention while maintaining effectiveness. Attributes: attn (AAttn): Area-attention module for processing spatial features. mlp (nn.Sequential): Multi-layer perceptron for feature transformation. Methods: _init_weights: Initializes module weights using truncated normal distribution. forward: Applies area-attention and feed-forward processing to input tensor. Examples: >>> block = ABlock(dim=256, num_heads=8, mlp_ratio=1.2, area=1) >>> x = torch.randn(1, 256, 32, 32) >>> output = block(x) >>> print(output.shape) torch.Size([1, 256, 32, 32]) """ def __init__(self, dim: int, num_heads: int, mlp_ratio: float = 1.2, area: int = 1): """ Initialize an Area-attention block module. Args: dim (int): Number of input channels. num_heads (int): Number of heads into which the attention mechanism is divided. mlp_ratio (float): Expansion ratio for MLP hidden dimension. area (int): Number of areas the feature map is divided. """ super().__init__() self.attn = AAttn(dim, num_heads=num_heads, area=area) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False)) self.apply(self._init_weights) def _init_weights(self, m: nn.Module): """ Initialize weights using a truncated normal distribution. Args: m (nn.Module): Module to initialize. """ if isinstance(m, nn.Conv2d): nn.init.trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass through ABlock. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after area-attention and feed-forward processing. """ x = x + self.attn(x) return x + self.mlp(x) class A2C2f(nn.Module): """ Area-Attention C2f module for enhanced feature extraction with area-based attention mechanisms. This module extends the C2f architecture by incorporating area-attention and ABlock layers for improved feature processing. It supports both area-attention and standard convolution modes. Attributes: cv1 (Conv): Initial 1x1 convolution layer that reduces input channels to hidden channels. cv2 (Conv): Final 1x1 convolution layer that processes concatenated features. gamma (nn.Parameter | None): Learnable parameter for residual scaling when using area attention. m (nn.ModuleList): List of either ABlock or C3k modules for feature processing. Methods: forward: Processes input through area-attention or standard convolution pathway. Examples: >>> m = A2C2f(512, 512, n=1, a2=True, area=1) >>> x = torch.randn(1, 512, 32, 32) >>> output = m(x) >>> print(output.shape) torch.Size([1, 512, 32, 32]) """ def __init__( self, c1: int, c2: int, n: int = 1, a2: bool = True, area: int = 1, residual: bool = False, mlp_ratio: float = 2.0, e: float = 0.5, g: int = 1, shortcut: bool = True, ): """ Initialize Area-Attention C2f module. Args: c1 (int): Number of input channels. c2 (int): Number of output channels. n (int): Number of ABlock or C3k modules to stack. a2 (bool): Whether to use area attention blocks. If False, uses C3k blocks instead. area (int): Number of areas the feature map is divided. residual (bool): Whether to use residual connections with learnable gamma parameter. mlp_ratio (float): Expansion ratio for MLP hidden dimension. e (float): Channel expansion ratio for hidden channels. g (int): Number of groups for grouped convolutions. shortcut (bool): Whether to use shortcut connections in C3k blocks. """ super().__init__() c_ = int(c2 * e) # hidden channels assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32." self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv((1 + n) * c_, c2, 1) self.gamma = nn.Parameter(0.01 * torch.ones(c2), requires_grad=True) if a2 and residual else None self.m = nn.ModuleList( nn.Sequential(*(ABlock(c_, c_ // 32, mlp_ratio, area) for _ in range(2))) if a2 else C3k(c_, c_, 2, shortcut, g) for _ in range(n) ) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass through A2C2f layer. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after processing. """ y = [self.cv1(x)] y.extend(m(y[-1]) for m in self.m) y = self.cv2(torch.cat(y, 1)) if self.gamma is not None: return x + self.gamma.view(-1, len(self.gamma), 1, 1) * y return y class SwiGLUFFN(nn.Module): """SwiGLU Feed-Forward Network for transformer-based architectures.""" def __init__(self, gc: int, ec: int, e: int = 4) -> None: """ Initialize SwiGLU FFN with input dimension, output dimension, and expansion factor. Args: gc (int): Guide channels. ec (int): Embedding channels. e (int): Expansion factor. """ super().__init__() self.w12 = nn.Linear(gc, e * ec) self.w3 = nn.Linear(e * ec // 2, ec) def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply SwiGLU transformation to input features.""" x12 = self.w12(x) x1, x2 = x12.chunk(2, dim=-1) hidden = F.silu(x1) * x2 return self.w3(hidden) class Residual(nn.Module): """Residual connection wrapper for neural network modules.""" def __init__(self, m: nn.Module) -> None: """ Initialize residual module with the wrapped module. Args: m (nn.Module): Module to wrap with residual connection. """ super().__init__() self.m = m nn.init.zeros_(self.m.w3.bias) # For models with l scale, please change the initialization to # nn.init.constant_(self.m.w3.weight, 1e-6) nn.init.zeros_(self.m.w3.weight) def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply residual connection to input features.""" return x + self.m(x) class SAVPE(nn.Module): """Spatial-Aware Visual Prompt Embedding module for feature enhancement.""" def __init__(self, ch: List[int], c3: int, embed: int): """ Initialize SAVPE module with channels, intermediate channels, and embedding dimension. Args: ch (List[int]): List of input channel dimensions. c3 (int): Intermediate channels. embed (int): Embedding dimension. """ super().__init__() self.cv1 = nn.ModuleList( nn.Sequential( Conv(x, c3, 3), Conv(c3, c3, 3), nn.Upsample(scale_factor=i * 2) if i in {1, 2} else nn.Identity() ) for i, x in enumerate(ch) ) self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c3, 1), nn.Upsample(scale_factor=i * 2) if i in {1, 2} else nn.Identity()) for i, x in enumerate(ch) ) self.c = 16 self.cv3 = nn.Conv2d(3 * c3, embed, 1) self.cv4 = nn.Conv2d(3 * c3, self.c, 3, padding=1) self.cv5 = nn.Conv2d(1, self.c, 3, padding=1) self.cv6 = nn.Sequential(Conv(2 * self.c, self.c, 3), nn.Conv2d(self.c, self.c, 3, padding=1)) def forward(self, x: List[torch.Tensor], vp: torch.Tensor) -> torch.Tensor: """Process input features and visual prompts to generate enhanced embeddings.""" y = [self.cv2[i](xi) for i, xi in enumerate(x)] y = self.cv4(torch.cat(y, dim=1)) x = [self.cv1[i](xi) for i, xi in enumerate(x)] x = self.cv3(torch.cat(x, dim=1)) B, C, H, W = x.shape Q = vp.shape[1] x = x.view(B, C, -1) y = y.reshape(B, 1, self.c, H, W).expand(-1, Q, -1, -1, -1).reshape(B * Q, self.c, H, W) vp = vp.reshape(B, Q, 1, H, W).reshape(B * Q, 1, H, W) y = self.cv6(torch.cat((y, self.cv5(vp)), dim=1)) y = y.reshape(B, Q, self.c, -1) vp = vp.reshape(B, Q, 1, -1) score = y * vp + torch.logical_not(vp) * torch.finfo(y.dtype).min score = F.softmax(score, dim=-1, dtype=torch.float).to(score.dtype) aggregated = score.transpose(-2, -3) @ x.reshape(B, self.c, C // self.c, -1).transpose(-1, -2) return F.normalize(aggregated.transpose(-2, -3).reshape(B, Q, -1), dim=-1, p=2)