# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from collections import defaultdict from typing import Any from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults class AIGym(BaseSolution): """ A class to manage gym steps of people in a real-time video stream based on their poses. This class extends BaseSolution to monitor workouts using YOLO pose estimation models. It tracks and counts repetitions of exercises based on predefined angle thresholds for up and down positions. Attributes: states (Dict[float, int, str]): Stores per-track angle, count, and stage for workout monitoring. up_angle (float): Angle threshold for considering the 'up' position of an exercise. down_angle (float): Angle threshold for considering the 'down' position of an exercise. kpts (List[int]): Indices of keypoints used for angle calculation. Methods: process: Process a frame to detect poses, calculate angles, and count repetitions. Examples: >>> gym = AIGym(model="yolo11n-pose.pt") >>> image = cv2.imread("gym_scene.jpg") >>> results = gym.process(image) >>> processed_image = results.plot_im >>> cv2.imshow("Processed Image", processed_image) >>> cv2.waitKey(0) """ def __init__(self, **kwargs: Any) -> None: """ Initialize AIGym for workout monitoring using pose estimation and predefined angles. Args: **kwargs (Any): Keyword arguments passed to the parent class constructor. model (str): Model name or path, defaults to "yolo11n-pose.pt". """ kwargs["model"] = kwargs.get("model", "yolo11n-pose.pt") super().__init__(**kwargs) self.states = defaultdict(lambda: {"angle": 0, "count": 0, "stage": "-"}) # Dict for count, angle and stage # Extract details from CFG single time for usage later self.up_angle = float(self.CFG["up_angle"]) # Pose up predefined angle to consider up pose self.down_angle = float(self.CFG["down_angle"]) # Pose down predefined angle to consider down pose self.kpts = self.CFG["kpts"] # User selected kpts of workouts storage for further usage def process(self, im0) -> SolutionResults: """ Monitor workouts using Ultralytics YOLO Pose Model. This function processes an input image to track and analyze human poses for workout monitoring. It uses the YOLO Pose model to detect keypoints, estimate angles, and count repetitions based on predefined angle thresholds. Args: im0 (np.ndarray): Input image for processing. Returns: (SolutionResults): Contains processed image `plot_im`, 'workout_count' (list of completed reps), 'workout_stage' (list of current stages), 'workout_angle' (list of angles), and 'total_tracks' (total number of tracked individuals). Examples: >>> gym = AIGym() >>> image = cv2.imread("workout.jpg") >>> results = gym.process(image) >>> processed_image = results.plot_im """ annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator self.extract_tracks(im0) # Extract tracks (bounding boxes, classes, and masks) if len(self.boxes): kpt_data = self.tracks.keypoints.data for i, k in enumerate(kpt_data): state = self.states[self.track_ids[i]] # get state details # Get keypoints and estimate the angle state["angle"] = annotator.estimate_pose_angle(*[k[int(idx)] for idx in self.kpts]) annotator.draw_specific_kpts(k, self.kpts, radius=self.line_width * 3) # Determine stage and count logic based on angle thresholds if state["angle"] < self.down_angle: if state["stage"] == "up": state["count"] += 1 state["stage"] = "down" elif state["angle"] > self.up_angle: state["stage"] = "up" # Display angle, count, and stage text if self.show_labels: annotator.plot_angle_and_count_and_stage( angle_text=state["angle"], # angle text for display count_text=state["count"], # count text for workouts stage_text=state["stage"], # stage position text center_kpt=k[int(self.kpts[1])], # center keypoint for display ) plot_im = annotator.result() self.display_output(plot_im) # Display output image, if environment support display # Return SolutionResults return SolutionResults( plot_im=plot_im, workout_count=[v["count"] for v in self.states.values()], workout_stage=[v["stage"] for v in self.states.values()], workout_angle=[v["angle"] for v in self.states.values()], total_tracks=len(self.track_ids), )