# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from dataclasses import dataclass, field from typing import Any, List, Optional, Tuple import cv2 @dataclass class SolutionConfig: """ Manages configuration parameters for Ultralytics Vision AI solutions. The SolutionConfig class serves as a centralized configuration container for all the Ultralytics solution modules: https://docs.ultralytics.com/solutions/#solutions. It leverages Python `dataclass` for clear, type-safe, and maintainable parameter definitions. Attributes: source (str, optional): Path to the input source (video, RTSP, etc.). Only usable with Solutions CLI. model (str, optional): Path to the Ultralytics YOLO model to be used for inference. classes (List[int], optional): List of class indices to filter detections. show_conf (bool): Whether to show confidence scores on the visual output. show_labels (bool): Whether to display class labels on visual output. region (List[Tuple[int, int]], optional): Polygonal region or line for object counting. colormap (int, optional): OpenCV colormap constant for visual overlays (e.g., cv2.COLORMAP_JET). show_in (bool): Whether to display count number for objects entering the region. show_out (bool): Whether to display count number for objects leaving the region. up_angle (float): Upper angle threshold used in pose-based workouts monitoring. down_angle (int): Lower angle threshold used in pose-based workouts monitoring. kpts (List[int]): Keypoint indices to monitor, e.g., for pose analytics. analytics_type (str): Type of analytics to perform ("line", "area", "bar", "pie", etc.). figsize (Tuple[int, int], optional): Size of the matplotlib figure used for analytical plots (width, height). blur_ratio (float): Ratio used to blur objects in the video frames (0.0 to 1.0). vision_point (Tuple[int, int]): Reference point for directional tracking or perspective drawing. crop_dir (str): Directory path to save cropped detection images. json_file (str): Path to a JSON file containing data for parking areas. line_width (int): Width for visual display i.e. bounding boxes, keypoints, counts. records (int): Number of detection records to send email alerts. fps (float): Frame rate (Frames Per Second) for speed estimation calculation. max_hist (int): Maximum number of historical points or states stored per tracked object for speed estimation. meter_per_pixel (float): Scale for real-world measurement, used in speed or distance calculations. max_speed (int): Maximum speed limit (e.g., km/h or mph) used in visual alerts or constraints. show (bool): Whether to display the visual output on screen. iou (float): Intersection-over-Union threshold for detection filtering. conf (float): Confidence threshold for keeping predictions. device (str, optional): Device to run inference on (e.g., 'cpu', '0' for CUDA GPU). max_det (int): Maximum number of detections allowed per video frame. half (bool): Whether to use FP16 precision (requires a supported CUDA device). tracker (str): Path to tracking configuration YAML file (e.g., 'botsort.yaml'). verbose (bool): Enable verbose logging output for debugging or diagnostics. data (str): Path to image directory used for similarity search. Methods: update: Update the configuration with user-defined keyword arguments and raise error on invalid keys. Examples: >>> from ultralytics.solutions.config import SolutionConfig >>> cfg = SolutionConfig(model="yolo11n.pt", region=[(0, 0), (100, 0), (100, 100), (0, 100)]) >>> cfg.update(show=False, conf=0.3) >>> print(cfg.model) """ source: Optional[str] = None model: Optional[str] = None classes: Optional[List[int]] = None show_conf: bool = True show_labels: bool = True region: Optional[List[Tuple[int, int]]] = None colormap: Optional[int] = cv2.COLORMAP_DEEPGREEN show_in: bool = True show_out: bool = True up_angle: float = 145.0 down_angle: int = 90 kpts: List[int] = field(default_factory=lambda: [6, 8, 10]) analytics_type: str = "line" figsize: Optional[Tuple[int, int]] = (12.8, 7.2) blur_ratio: float = 0.5 vision_point: Tuple[int, int] = (20, 20) crop_dir: str = "cropped-detections" json_file: str = None line_width: int = 2 records: int = 5 fps: float = 30.0 max_hist: int = 5 meter_per_pixel: float = 0.05 max_speed: int = 120 show: bool = False iou: float = 0.7 conf: float = 0.25 device: Optional[str] = None max_det: int = 300 half: bool = False tracker: str = "botsort.yaml" verbose: bool = True data: str = "images" def update(self, **kwargs: Any): """Update configuration parameters with new values provided as keyword arguments.""" for key, value in kwargs.items(): if hasattr(self, key): setattr(self, key, value) else: url = "https://docs.ultralytics.com/solutions/#solutions-arguments" raise ValueError(f"{key} is not a valid solution argument, see {url}") return self