# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from typing import Any, List import cv2 import numpy as np from ultralytics.solutions.object_counter import ObjectCounter from ultralytics.solutions.solutions import SolutionAnnotator, SolutionResults class Heatmap(ObjectCounter): """ A class to draw heatmaps in real-time video streams based on object tracks. This class extends the ObjectCounter class to generate and visualize heatmaps of object movements in video streams. It uses tracked object positions to create a cumulative heatmap effect over time. Attributes: initialized (bool): Flag indicating whether the heatmap has been initialized. colormap (int): OpenCV colormap used for heatmap visualization. heatmap (np.ndarray): Array storing the cumulative heatmap data. annotator (SolutionAnnotator): Object for drawing annotations on the image. Methods: heatmap_effect: Calculate and update the heatmap effect for a given bounding box. process: Generate and apply the heatmap effect to each frame. Examples: >>> from ultralytics.solutions import Heatmap >>> heatmap = Heatmap(model="yolo11n.pt", colormap=cv2.COLORMAP_JET) >>> frame = cv2.imread("frame.jpg") >>> processed_frame = heatmap.process(frame) """ def __init__(self, **kwargs: Any) -> None: """ Initialize the Heatmap class for real-time video stream heatmap generation based on object tracks. Args: **kwargs (Any): Keyword arguments passed to the parent ObjectCounter class. """ super().__init__(**kwargs) self.initialized = False # Flag for heatmap initialization if self.region is not None: # Check if user provided the region coordinates self.initialize_region() # Store colormap self.colormap = self.CFG["colormap"] self.heatmap = None def heatmap_effect(self, box: List[float]) -> None: """ Efficiently calculate heatmap area and effect location for applying colormap. Args: box (List[float]): Bounding box coordinates [x0, y0, x1, y1]. """ x0, y0, x1, y1 = map(int, box) radius_squared = (min(x1 - x0, y1 - y0) // 2) ** 2 # Create a meshgrid with region of interest (ROI) for vectorized distance calculations xv, yv = np.meshgrid(np.arange(x0, x1), np.arange(y0, y1)) # Calculate squared distances from the center dist_squared = (xv - ((x0 + x1) // 2)) ** 2 + (yv - ((y0 + y1) // 2)) ** 2 # Create a mask of points within the radius within_radius = dist_squared <= radius_squared # Update only the values within the bounding box in a single vectorized operation self.heatmap[y0:y1, x0:x1][within_radius] += 2 def process(self, im0: np.ndarray) -> SolutionResults: """ Generate heatmap for each frame using Ultralytics tracking. Args: im0 (np.ndarray): Input image array for processing. Returns: (SolutionResults): Contains processed image `plot_im`, 'in_count' (int, count of objects entering the region), 'out_count' (int, count of objects exiting the region), 'classwise_count' (dict, per-class object count), and 'total_tracks' (int, total number of tracked objects). """ if not self.initialized: self.heatmap = np.zeros_like(im0, dtype=np.float32) * 0.99 self.initialized = True # Initialize heatmap only once self.extract_tracks(im0) # Extract tracks self.annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator # Iterate over bounding boxes, track ids and classes index for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): # Apply heatmap effect for the bounding box self.heatmap_effect(box) if self.region is not None: self.annotator.draw_region(reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2) self.store_tracking_history(track_id, box) # Store track history # Get previous position if available prev_position = None if len(self.track_history[track_id]) > 1: prev_position = self.track_history[track_id][-2] self.count_objects(self.track_history[track_id][-1], track_id, prev_position, cls) # object counting plot_im = self.annotator.result() if self.region is not None: self.display_counts(plot_im) # Display the counts on the frame # Normalize, apply colormap to heatmap and combine with original image if self.track_data.is_track: normalized_heatmap = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) colored_heatmap = cv2.applyColorMap(normalized_heatmap, self.colormap) plot_im = cv2.addWeighted(plot_im, 0.5, colored_heatmap, 0.5, 0) self.display_output(plot_im) # Display output with base class function # Return SolutionResults return SolutionResults( plot_im=plot_im, in_count=self.in_count, out_count=self.out_count, classwise_count=dict(self.classwise_count), total_tracks=len(self.track_ids), )