# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from typing import Any import cv2 import numpy as np from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults from ultralytics.utils.plotting import colors class TrackZone(BaseSolution): """ A class to manage region-based object tracking in a video stream. This class extends the BaseSolution class and provides functionality for tracking objects within a specific region defined by a polygonal area. Objects outside the region are excluded from tracking. Attributes: region (np.ndarray): The polygonal region for tracking, represented as a convex hull of points. line_width (int): Width of the lines used for drawing bounding boxes and region boundaries. names (List[str]): List of class names that the model can detect. boxes (List[np.ndarray]): Bounding boxes of tracked objects. track_ids (List[int]): Unique identifiers for each tracked object. clss (List[int]): Class indices of tracked objects. Methods: process: Process each frame of the video, applying region-based tracking. extract_tracks: Extract tracking information from the input frame. display_output: Display the processed output. Examples: >>> tracker = TrackZone() >>> frame = cv2.imread("frame.jpg") >>> results = tracker.process(frame) >>> cv2.imshow("Tracked Frame", results.plot_im) """ def __init__(self, **kwargs: Any) -> None: """ Initialize the TrackZone class for tracking objects within a defined region in video streams. Args: **kwargs (Any): Additional keyword arguments passed to the parent class. """ super().__init__(**kwargs) default_region = [(75, 75), (565, 75), (565, 285), (75, 285)] self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32)) self.mask = None def process(self, im0: np.ndarray) -> SolutionResults: """ Process the input frame to track objects within a defined region. This method initializes the annotator, creates a mask for the specified region, extracts tracks only from the masked area, and updates tracking information. Objects outside the region are ignored. Args: im0 (np.ndarray): The input image or frame to be processed. Returns: (SolutionResults): Contains processed image `plot_im` and `total_tracks` (int) representing the total number of tracked objects within the defined region. Examples: >>> tracker = TrackZone() >>> frame = cv2.imread("path/to/image.jpg") >>> results = tracker.process(frame) """ annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator if self.mask is None: # Create a mask for the region self.mask = np.zeros_like(im0[:, :, 0]) cv2.fillPoly(self.mask, [self.region], 255) masked_frame = cv2.bitwise_and(im0, im0, mask=self.mask) self.extract_tracks(masked_frame) # Draw the region boundary cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2) # Iterate over boxes, track ids, classes indexes list and draw bounding boxes for box, track_id, cls, conf in zip(self.boxes, self.track_ids, self.clss, self.confs): annotator.box_label( box, label=self.adjust_box_label(cls, conf, track_id=track_id), color=colors(track_id, True) ) plot_im = annotator.result() self.display_output(plot_im) # Display output with base class function # Return a SolutionResults return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))