# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI # Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/ # Example usage: yolo train data=Argoverse.yaml # parent # ├── ultralytics # └── datasets # └── Argoverse ← downloads here (31.5 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: Argoverse # dataset root dir train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview # Classes names: 0: person 1: bicycle 2: car 3: motorcycle 4: bus 5: truck 6: traffic_light 7: stop_sign # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | import json from pathlib import Path from tqdm import tqdm from ultralytics.utils.downloads import download def argoverse2yolo(set): """Convert Argoverse dataset annotations to YOLO format for object detection tasks.""" labels = {} a = json.load(open(set, "rb")) for annot in tqdm(a["annotations"], desc=f"Converting {set} to YOLOv5 format..."): img_id = annot["image_id"] img_name = a["images"][img_id]["name"] img_label_name = f"{img_name[:-3]}txt" cls = annot["category_id"] # instance class id x_center, y_center, width, height = annot["bbox"] x_center = (x_center + width / 2) / 1920.0 # offset and scale y_center = (y_center + height / 2) / 1200.0 # offset and scale width /= 1920.0 # scale height /= 1200.0 # scale img_dir = set.parents[2] / "Argoverse-1.1" / "labels" / a["seq_dirs"][a["images"][annot["image_id"]]["sid"]] if not img_dir.exists(): img_dir.mkdir(parents=True, exist_ok=True) k = str(img_dir / img_label_name) if k not in labels: labels[k] = [] labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n") for k in labels: with open(k, "w", encoding="utf-8") as f: f.writelines(labels[k]) # Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link) dir = Path(yaml["path"]) # dataset root dir urls = ["https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link"] print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.") print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n") # download(urls, dir=dir) # Convert annotations_dir = "Argoverse-HD/annotations/" (dir / "Argoverse-1.1" / "tracking").rename(dir / "Argoverse-1.1" / "images") # rename 'tracking' to 'images' for d in "train.json", "val.json": argoverse2yolo(dir / annotations_dir / d) # convert Argoverse annotations to YOLO labels