# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from itertools import cycle from typing import Any, Dict, Optional import cv2 import numpy as np from ultralytics.solutions.solutions import BaseSolution, SolutionResults # Import a parent class class Analytics(BaseSolution): """ A class for creating and updating various types of charts for visual analytics. This class extends BaseSolution to provide functionality for generating line, bar, pie, and area charts based on object detection and tracking data. Attributes: type (str): The type of analytics chart to generate ('line', 'bar', 'pie', or 'area'). x_label (str): Label for the x-axis. y_label (str): Label for the y-axis. bg_color (str): Background color of the chart frame. fg_color (str): Foreground color of the chart frame. title (str): Title of the chart window. max_points (int): Maximum number of data points to display on the chart. fontsize (int): Font size for text display. color_cycle (cycle): Cyclic iterator for chart colors. total_counts (int): Total count of detected objects (used for line charts). clswise_count (Dict[str, int]): Dictionary for class-wise object counts. fig (Figure): Matplotlib figure object for the chart. ax (Axes): Matplotlib axes object for the chart. canvas (FigureCanvasAgg): Canvas for rendering the chart. lines (dict): Dictionary to store line objects for area charts. color_mapping (Dict[str, str]): Dictionary mapping class labels to colors for consistent visualization. Methods: process: Process image data and update the chart. update_graph: Update the chart with new data points. Examples: >>> analytics = Analytics(analytics_type="line") >>> frame = cv2.imread("image.jpg") >>> results = analytics.process(frame, frame_number=1) >>> cv2.imshow("Analytics", results.plot_im) """ def __init__(self, **kwargs: Any) -> None: """Initialize Analytics class with various chart types for visual data representation.""" super().__init__(**kwargs) import matplotlib.pyplot as plt # scope for faster 'import ultralytics' from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.figure import Figure self.type = self.CFG["analytics_type"] # type of analytics i.e "line", "pie", "bar" or "area" charts. self.x_label = "Classes" if self.type in {"bar", "pie"} else "Frame#" self.y_label = "Total Counts" # Predefined data self.bg_color = "#F3F3F3" # background color of frame self.fg_color = "#111E68" # foreground color of frame self.title = "Ultralytics Solutions" # window name self.max_points = 45 # maximum points to be drawn on window self.fontsize = 25 # text font size for display figsize = self.CFG["figsize"] # set output image size i.e (12.8, 7.2) -> w = 1280, h = 720 self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"]) self.total_counts = 0 # count variable for storing total counts i.e. for line self.clswise_count = {} # dictionary for class-wise counts self.update_every = kwargs.get("update_every", 30) # Only update graph every 30 frames by default self.last_plot_im = None # Cache of the last rendered chart # Ensure line and area chart if self.type in {"line", "area"}: self.lines = {} self.fig = Figure(facecolor=self.bg_color, figsize=figsize) self.canvas = FigureCanvasAgg(self.fig) # Set common axis properties self.ax = self.fig.add_subplot(111, facecolor=self.bg_color) if self.type == "line": (self.line,) = self.ax.plot([], [], color="cyan", linewidth=self.line_width) elif self.type in {"bar", "pie"}: # Initialize bar or pie plot self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color) self.canvas = FigureCanvasAgg(self.fig) # Set common axis properties self.ax.set_facecolor(self.bg_color) self.color_mapping = {} if self.type == "pie": # Ensure pie chart is circular self.ax.axis("equal") def process(self, im0: np.ndarray, frame_number: int) -> SolutionResults: """ Process image data and run object tracking to update analytics charts. Args: im0 (np.ndarray): Input image for processing. frame_number (int): Video frame number for plotting the data. Returns: (SolutionResults): Contains processed image `plot_im`, 'total_tracks' (int, total number of tracked objects) and 'classwise_count' (dict, per-class object count). Raises: ModuleNotFoundError: If an unsupported chart type is specified. Examples: >>> analytics = Analytics(analytics_type="line") >>> frame = np.zeros((480, 640, 3), dtype=np.uint8) >>> results = analytics.process(frame, frame_number=1) """ self.extract_tracks(im0) # Extract tracks if self.type == "line": for _ in self.boxes: self.total_counts += 1 update_required = frame_number % self.update_every == 0 or self.last_plot_im is None if update_required: self.last_plot_im = self.update_graph(frame_number=frame_number) plot_im = self.last_plot_im self.total_counts = 0 elif self.type in {"pie", "bar", "area"}: from collections import Counter self.clswise_count = Counter(self.names[int(cls)] for cls in self.clss) update_required = frame_number % self.update_every == 0 or self.last_plot_im is None if update_required: self.last_plot_im = self.update_graph( frame_number=frame_number, count_dict=self.clswise_count, plot=self.type ) plot_im = self.last_plot_im else: raise ModuleNotFoundError(f"{self.type} chart is not supported ❌") # return output dictionary with summary for more usage return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids), classwise_count=self.clswise_count) def update_graph( self, frame_number: int, count_dict: Optional[Dict[str, int]] = None, plot: str = "line" ) -> np.ndarray: """ Update the graph with new data for single or multiple classes. Args: frame_number (int): The current frame number. count_dict (Dict[str, int], optional): Dictionary with class names as keys and counts as values for multiple classes. If None, updates a single line graph. plot (str): Type of the plot. Options are 'line', 'bar', 'pie', or 'area'. Returns: (np.ndarray): Updated image containing the graph. Examples: >>> analytics = Analytics(analytics_type="bar") >>> frame_num = 10 >>> results_dict = {"person": 5, "car": 3} >>> updated_image = analytics.update_graph(frame_num, results_dict, plot="bar") """ if count_dict is None: # Single line update x_data = np.append(self.line.get_xdata(), float(frame_number)) y_data = np.append(self.line.get_ydata(), float(self.total_counts)) if len(x_data) > self.max_points: x_data, y_data = x_data[-self.max_points :], y_data[-self.max_points :] self.line.set_data(x_data, y_data) self.line.set_label("Counts") self.line.set_color("#7b0068") # Pink color self.line.set_marker("*") self.line.set_markersize(self.line_width * 5) else: labels = list(count_dict.keys()) counts = list(count_dict.values()) if plot == "area": color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"]) # Multiple lines or area update x_data = self.ax.lines[0].get_xdata() if self.ax.lines else np.array([]) y_data_dict = {key: np.array([]) for key in count_dict.keys()} if self.ax.lines: for line, key in zip(self.ax.lines, count_dict.keys()): y_data_dict[key] = line.get_ydata() x_data = np.append(x_data, float(frame_number)) max_length = len(x_data) for key in count_dict.keys(): y_data_dict[key] = np.append(y_data_dict[key], float(count_dict[key])) if len(y_data_dict[key]) < max_length: y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key]))) if len(x_data) > self.max_points: x_data = x_data[1:] for key in count_dict.keys(): y_data_dict[key] = y_data_dict[key][1:] self.ax.clear() for key, y_data in y_data_dict.items(): color = next(color_cycle) self.ax.fill_between(x_data, y_data, color=color, alpha=0.55) self.ax.plot( x_data, y_data, color=color, linewidth=self.line_width, marker="o", markersize=self.line_width * 5, label=f"{key} Data Points", ) if plot == "bar": self.ax.clear() # clear bar data for label in labels: # Map labels to colors if label not in self.color_mapping: self.color_mapping[label] = next(self.color_cycle) colors = [self.color_mapping[label] for label in labels] bars = self.ax.bar(labels, counts, color=colors) for bar, count in zip(bars, counts): self.ax.text( bar.get_x() + bar.get_width() / 2, bar.get_height(), str(count), ha="center", va="bottom", color=self.fg_color, ) # Create the legend using labels from the bars for bar, label in zip(bars, labels): bar.set_label(label) # Assign label to each bar self.ax.legend(loc="upper left", fontsize=13, facecolor=self.fg_color, edgecolor=self.fg_color) if plot == "pie": total = sum(counts) percentages = [size / total * 100 for size in counts] start_angle = 90 self.ax.clear() # Create pie chart and create legend labels with percentages wedges, _ = self.ax.pie( counts, labels=labels, startangle=start_angle, textprops={"color": self.fg_color}, autopct=None ) legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)] # Assign the legend using the wedges and manually created labels self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1)) self.fig.subplots_adjust(left=0.1, right=0.75) # Adjust layout to fit the legend # Common plot settings self.ax.set_facecolor("#f0f0f0") # Set to light gray or any other color you like self.ax.grid(True, linestyle="--", linewidth=0.5, alpha=0.5) # Display grid for more data insights self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize) self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3) self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3) # Add and format legend legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.bg_color) for text in legend.get_texts(): text.set_color(self.fg_color) # Redraw graph, update view, capture, and display the updated plot self.ax.relim() self.ax.autoscale_view() self.canvas.draw() im0 = np.array(self.canvas.renderer.buffer_rgba()) im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR) self.display_output(im0) return im0 # Return the image