# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from typing import Any import cv2 from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults from ultralytics.utils import LOGGER from ultralytics.utils.plotting import colors class ObjectBlurrer(BaseSolution): """ A class to manage the blurring of detected objects in a real-time video stream. This class extends the BaseSolution class and provides functionality for blurring objects based on detected bounding boxes. The blurred areas are updated directly in the input image, allowing for privacy preservation or other effects. Attributes: blur_ratio (int): The intensity of the blur effect applied to detected objects (higher values create more blur). iou (float): Intersection over Union threshold for object detection. conf (float): Confidence threshold for object detection. Methods: process: Apply a blurring effect to detected objects in the input image. extract_tracks: Extract tracking information from detected objects. display_output: Display the processed output image. Examples: >>> blurrer = ObjectBlurrer() >>> frame = cv2.imread("frame.jpg") >>> processed_results = blurrer.process(frame) >>> print(f"Total blurred objects: {processed_results.total_tracks}") """ def __init__(self, **kwargs: Any) -> None: """ Initialize the ObjectBlurrer class for applying a blur effect to objects detected in video streams or images. Args: **kwargs (Any): Keyword arguments passed to the parent class and for configuration. blur_ratio (float): Intensity of the blur effect (0.1-1.0, default=0.5). """ super().__init__(**kwargs) blur_ratio = self.CFG["blur_ratio"] if blur_ratio < 0.1: LOGGER.warning("blur ratio cannot be less than 0.1, updating it to default value 0.5") blur_ratio = 0.5 self.blur_ratio = int(blur_ratio * 100) def process(self, im0) -> SolutionResults: """ Apply a blurring effect to detected objects in the input image. This method extracts tracking information, applies blur to regions corresponding to detected objects, and annotates the image with bounding boxes. Args: im0 (numpy.ndarray): The input image containing detected objects. Returns: (SolutionResults): Object containing the processed image and number of tracked objects. - plot_im (numpy.ndarray): The annotated output image with blurred objects. - total_tracks (int): The total number of tracked objects in the frame. Examples: >>> blurrer = ObjectBlurrer() >>> frame = cv2.imread("image.jpg") >>> results = blurrer.process(frame) >>> print(f"Blurred {results.total_tracks} objects") """ self.extract_tracks(im0) # Extract tracks annotator = SolutionAnnotator(im0, self.line_width) # Iterate over bounding boxes and classes for box, cls, conf in zip(self.boxes, self.clss, self.confs): # Crop and blur the detected object blur_obj = cv2.blur( im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])], (self.blur_ratio, self.blur_ratio), ) # Update the blurred area in the original image im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = blur_obj annotator.box_label( box, label=self.adjust_box_label(cls, conf), color=colors(cls, True) ) # Annotate bounding box plot_im = annotator.result() self.display_output(plot_im) # Display the output using the base class function # Return a SolutionResults return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))