# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING try: assert not TESTS_RUNNING # do not log pytest assert SETTINGS["neptune"] is True # verify integration is enabled import neptune from neptune.types import File assert hasattr(neptune, "__version__") run = None # NeptuneAI experiment logger instance except (ImportError, AssertionError): neptune = None def _log_scalars(scalars: dict, step: int = 0) -> None: """ Log scalars to the NeptuneAI experiment logger. Args: scalars (dict): Dictionary of scalar values to log to NeptuneAI. step (int, optional): The current step or iteration number for logging. Examples: >>> metrics = {"mAP": 0.85, "loss": 0.32} >>> _log_scalars(metrics, step=100) """ if run: for k, v in scalars.items(): run[k].append(value=v, step=step) def _log_images(imgs_dict: dict, group: str = "") -> None: """ Log images to the NeptuneAI experiment logger. This function logs image data to Neptune.ai when a valid Neptune run is active. Images are organized under the specified group name. Args: imgs_dict (dict): Dictionary of images to log, with keys as image names and values as image data. group (str, optional): Group name to organize images under in the Neptune UI. Examples: >>> # Log validation images >>> _log_images({"val_batch": img_tensor}, group="validation") """ if run: for k, v in imgs_dict.items(): run[f"{group}/{k}"].upload(File(v)) def _log_plot(title: str, plot_path: str) -> None: """Log plots to the NeptuneAI experiment logger.""" import matplotlib.image as mpimg import matplotlib.pyplot as plt img = mpimg.imread(plot_path) fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks ax.imshow(img) run[f"Plots/{title}"].upload(fig) def on_pretrain_routine_start(trainer) -> None: """Initialize NeptuneAI run and log hyperparameters before training starts.""" try: global run run = neptune.init_run( project=trainer.args.project or "Ultralytics", name=trainer.args.name, tags=["Ultralytics"], ) run["Configuration/Hyperparameters"] = {k: "" if v is None else v for k, v in vars(trainer.args).items()} except Exception as e: LOGGER.warning(f"NeptuneAI installed but not initialized correctly, not logging this run. {e}") def on_train_epoch_end(trainer) -> None: """Log training metrics and learning rate at the end of each training epoch.""" _log_scalars(trainer.label_loss_items(trainer.tloss, prefix="train"), trainer.epoch + 1) _log_scalars(trainer.lr, trainer.epoch + 1) if trainer.epoch == 1: _log_images({f.stem: str(f) for f in trainer.save_dir.glob("train_batch*.jpg")}, "Mosaic") def on_fit_epoch_end(trainer) -> None: """Log model info and validation metrics at the end of each fit epoch.""" if run and trainer.epoch == 0: from ultralytics.utils.torch_utils import model_info_for_loggers run["Configuration/Model"] = model_info_for_loggers(trainer) _log_scalars(trainer.metrics, trainer.epoch + 1) def on_val_end(validator) -> None: """Log validation images at the end of validation.""" if run: # Log val_labels and val_pred _log_images({f.stem: str(f) for f in validator.save_dir.glob("val*.jpg")}, "Validation") def on_train_end(trainer) -> None: """Log final results, plots, and model weights at the end of training.""" if run: # Log final results, CM matrix + PR plots files = [ "results.png", "confusion_matrix.png", "confusion_matrix_normalized.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")), ] files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter for f in files: _log_plot(title=f.stem, plot_path=f) # Log the final model run[f"weights/{trainer.args.name or trainer.args.task}/{trainer.best.name}"].upload(File(str(trainer.best))) callbacks = ( { "on_pretrain_routine_start": on_pretrain_routine_start, "on_train_epoch_end": on_train_epoch_end, "on_fit_epoch_end": on_fit_epoch_end, "on_val_end": on_val_end, "on_train_end": on_train_end, } if neptune else {} )