image_to_pixle_params_yoloSAM/ultralytics-main/docs/en/integrations/mnn.md

17 KiB

comments description keywords
true Optimize YOLO11 models for mobile and embedded devices by exporting to MNN format. Learn how to convert, deploy, and run inference with MNN. Ultralytics, YOLO11, MNN, model export, machine learning, deployment, mobile, embedded systems, deep learning, AI models, inference, quantization

MNN Export for YOLO11 Models and Deploy

MNN

MNN architecture

MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models and has industry-leading performance for inference and training on-device. At present, MNN has been integrated into more than 30 apps of Alibaba Inc, such as Taobao, Tmall, Youku, DingTalk, Xianyu, etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity distribution, security risk control. In addition, MNN is also used on embedded devices, such as IoT.

Export to MNN: Converting Your YOLO11 Model

You can expand model compatibility and deployment flexibility by converting Ultralytics YOLO models to MNN format. This conversion optimizes your models for mobile and embedded environments, ensuring efficient performance on resource-constrained devices.

Installation

To install the required packages, run:

!!! tip "Installation"

=== "CLI"

    ```bash
    # Install the required package for YOLO11 and MNN
    pip install ultralytics
    pip install MNN
    ```

Usage

All Ultralytics YOLO11 models are designed to support export out of the box, making it easy to integrate them into your preferred deployment workflow. You can view the full list of supported export formats and configuration options to choose the best setup for your application.

!!! example "Usage"

=== "Python"

      ```python
      from ultralytics import YOLO

      # Load the YOLO11 model
      model = YOLO("yolo11n.pt")

      # Export the model to MNN format
      model.export(format="mnn")  # creates 'yolo11n.mnn'

      # Load the exported MNN model
      mnn_model = YOLO("yolo11n.mnn")

      # Run inference
      results = mnn_model("https://ultralytics.com/images/bus.jpg")
      ```

=== "CLI"

      ```bash
      # Export a YOLO11n PyTorch model to MNN format
      yolo export model=yolo11n.pt format=mnn # creates 'yolo11n.mnn'

      # Run inference with the exported model
      yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'
      ```

Export Arguments

Argument Type Default Description
format str 'mnn' Target format for the exported model, defining compatibility with various deployment environments.
imgsz int or tuple 640 Desired image size for the model input. Can be an integer for square images or a tuple (height, width) for specific dimensions.
half bool False Enables FP16 (half-precision) quantization, reducing model size and potentially speeding up inference on supported hardware.
int8 bool False Activates INT8 quantization, further compressing the model and speeding up inference with minimal accuracy loss, primarily for edge devices.
batch int 1 Specifies export model batch inference size or the max number of images the exported model will process concurrently in predict mode.
device str None Specifies the device for exporting: GPU (device=0), CPU (device=cpu), MPS for Apple silicon (device=mps).

For more details about the export process, visit the Ultralytics documentation page on exporting.

MNN-Only Inference

A function that relies solely on MNN for YOLO11 inference and preprocessing is implemented, providing both Python and C++ versions for easy deployment in any scenario.

!!! example "MNN"

=== "Python"

    ```python
    import argparse

    import MNN
    import MNN.cv as cv2
    import MNN.numpy as np


    def inference(model, img, precision, backend, thread):
        config = {}
        config["precision"] = precision
        config["backend"] = backend
        config["numThread"] = thread
        rt = MNN.nn.create_runtime_manager((config,))
        # net = MNN.nn.load_module_from_file(model, ['images'], ['output0'], runtime_manager=rt)
        net = MNN.nn.load_module_from_file(model, [], [], runtime_manager=rt)
        original_image = cv2.imread(img)
        ih, iw, _ = original_image.shape
        length = max((ih, iw))
        scale = length / 640
        image = np.pad(original_image, [[0, length - ih], [0, length - iw], [0, 0]], "constant")
        image = cv2.resize(
            image, (640, 640), 0.0, 0.0, cv2.INTER_LINEAR, -1, [0.0, 0.0, 0.0], [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0]
        )
        image = image[..., ::-1]  # BGR to RGB
        input_var = np.expand_dims(image, 0)
        input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
        output_var = net.forward(input_var)
        output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
        output_var = output_var.squeeze()
        # output_var shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
        cx = output_var[0]
        cy = output_var[1]
        w = output_var[2]
        h = output_var[3]
        probs = output_var[4:]
        # [cx, cy, w, h] -> [y0, x0, y1, x1]
        x0 = cx - w * 0.5
        y0 = cy - h * 0.5
        x1 = cx + w * 0.5
        y1 = cy + h * 0.5
        boxes = np.stack([x0, y0, x1, y1], axis=1)
        # ensure ratio is within the valid range [0.0, 1.0]
        boxes = np.clip(boxes, 0, 1)
        # get max prob and idx
        scores = np.max(probs, 0)
        class_ids = np.argmax(probs, 0)
        result_ids = MNN.expr.nms(boxes, scores, 100, 0.45, 0.25)
        print(result_ids.shape)
        # nms result box, score, ids
        result_boxes = boxes[result_ids]
        result_scores = scores[result_ids]
        result_class_ids = class_ids[result_ids]
        for i in range(len(result_boxes)):
            x0, y0, x1, y1 = result_boxes[i].read_as_tuple()
            y0 = int(y0 * scale)
            y1 = int(y1 * scale)
            x0 = int(x0 * scale)
            x1 = int(x1 * scale)
            # clamp to the original image size to handle cases where padding was applied
            x1 = min(iw, x1)
            y1 = min(ih, y1)
            print(result_class_ids[i])
            cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
        cv2.imwrite("res.jpg", original_image)


    if __name__ == "__main__":
        parser = argparse.ArgumentParser()
        parser.add_argument("--model", type=str, required=True, help="the yolo11 model path")
        parser.add_argument("--img", type=str, required=True, help="the input image path")
        parser.add_argument("--precision", type=str, default="normal", help="inference precision: normal, low, high, lowBF")
        parser.add_argument(
            "--backend",
            type=str,
            default="CPU",
            help="inference backend: CPU, OPENCL, OPENGL, NN, VULKAN, METAL, TRT, CUDA, HIAI",
        )
        parser.add_argument("--thread", type=int, default=4, help="inference using thread: int")
        args = parser.parse_args()
        inference(args.model, args.img, args.precision, args.backend, args.thread)
    ```

=== "CPP"

    ```cpp
    #include <stdio.h>
    #include <MNN/ImageProcess.hpp>
    #include <MNN/expr/Module.hpp>
    #include <MNN/expr/Executor.hpp>
    #include <MNN/expr/ExprCreator.hpp>
    #include <MNN/expr/Executor.hpp>

    #include <cv/cv.hpp>

    using namespace MNN;
    using namespace MNN::Express;
    using namespace MNN::CV;

    int main(int argc, const char* argv[]) {
        if (argc < 3) {
            MNN_PRINT("Usage: ./yolo11_demo.out model.mnn input.jpg [forwardType] [precision] [thread]\n");
            return 0;
        }
        int thread = 4;
        int precision = 0;
        int forwardType = MNN_FORWARD_CPU;
        if (argc >= 4) {
            forwardType = atoi(argv[3]);
        }
        if (argc >= 5) {
            precision = atoi(argv[4]);
        }
        if (argc >= 6) {
            thread = atoi(argv[5]);
        }
        MNN::ScheduleConfig sConfig;
        sConfig.type = static_cast<MNNForwardType>(forwardType);
        sConfig.numThread = thread;
        BackendConfig bConfig;
        bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision);
        sConfig.backendConfig = &bConfig;
        std::shared_ptr<Executor::RuntimeManager> rtmgr = std::shared_ptr<Executor::RuntimeManager>(Executor::RuntimeManager::createRuntimeManager(sConfig));
        if(rtmgr == nullptr) {
            MNN_ERROR("Empty RuntimeManger\n");
            return 0;
        }
        rtmgr->setCache(".cachefile");

        std::shared_ptr<Module> net(Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
        auto original_image = imread(argv[2]);
        auto dims = original_image->getInfo()->dim;
        int ih = dims[0];
        int iw = dims[1];
        int len = ih > iw ? ih : iw;
        float scale = len / 640.0;
        std::vector<int> padvals { 0, len - ih, 0, len - iw, 0, 0 };
        auto pads = _Const(static_cast<void*>(padvals.data()), {3, 2}, NCHW, halide_type_of<int>());
        auto image = _Pad(original_image, pads, CONSTANT);
        image = resize(image, Size(640, 640), 0, 0, INTER_LINEAR, -1, {0., 0., 0.}, {1./255., 1./255., 1./255.});
        image = cvtColor(image, COLOR_BGR2RGB);
        auto input = _Unsqueeze(image, {0});
        input = _Convert(input, NC4HW4);
        auto outputs = net->onForward({input});
        auto output = _Convert(outputs[0], NCHW);
        output = _Squeeze(output);
        // output shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
        auto cx = _Gather(output, _Scalar<int>(0));
        auto cy = _Gather(output, _Scalar<int>(1));
        auto w = _Gather(output, _Scalar<int>(2));
        auto h = _Gather(output, _Scalar<int>(3));
        std::vector<int> startvals { 4, 0 };
        auto start = _Const(static_cast<void*>(startvals.data()), {2}, NCHW, halide_type_of<int>());
        std::vector<int> sizevals { -1, -1 };
        auto size = _Const(static_cast<void*>(sizevals.data()), {2}, NCHW, halide_type_of<int>());
        auto probs = _Slice(output, start, size);
        // [cx, cy, w, h] -> [y0, x0, y1, x1]
        auto x0 = cx - w * _Const(0.5);
        auto y0 = cy - h * _Const(0.5);
        auto x1 = cx + w * _Const(0.5);
        auto y1 = cy + h * _Const(0.5);
        auto boxes = _Stack({x0, y0, x1, y1}, 1);
        // ensure ratio is within the valid range [0.0, 1.0]
        boxes = _Maximum(boxes, _Scalar<float>(0.0f));
        boxes = _Minimum(boxes, _Scalar<float>(1.0f));
        auto scores = _ReduceMax(probs, {0});
        auto ids = _ArgMax(probs, 0);
        auto result_ids = _Nms(boxes, scores, 100, 0.45, 0.25);
        auto result_ptr = result_ids->readMap<int>();
        auto box_ptr = boxes->readMap<float>();
        auto ids_ptr = ids->readMap<int>();
        auto score_ptr = scores->readMap<float>();
        for (int i = 0; i < 100; i++) {
            auto idx = result_ptr[i];
            if (idx < 0) break;
            auto x0 = box_ptr[idx * 4 + 0] * scale;
            auto y0 = box_ptr[idx * 4 + 1] * scale;
            auto x1 = box_ptr[idx * 4 + 2] * scale;
            auto y1 = box_ptr[idx * 4 + 3] * scale;
            // clamp to the original image size to handle cases where padding was applied
            x1 = std::min(static_cast<float>(iw), x1);
            y1 = std::min(static_cast<float>(ih), y1);
            auto class_idx = ids_ptr[idx];
            auto score = score_ptr[idx];
            rectangle(original_image, {x0, y0}, {x1, y1}, {0, 0, 255}, 2);
        }
        if (imwrite("res.jpg", original_image)) {
            MNN_PRINT("result image write to `res.jpg`.\n");
        }
        rtmgr->updateCache();
        return 0;
    }
    ```

Summary

In this guide, we introduce how to export the Ultralytics YOLO11 model to MNN and use MNN for inference. The MNN format provides excellent performance for edge AI applications, making it ideal for deploying computer vision models on resource-constrained devices.

For more usage, please refer to the MNN documentation.

FAQ

How do I export Ultralytics YOLO11 models to MNN format?

To export your Ultralytics YOLO11 model to MNN format, follow these steps:

!!! example "Export"

=== "Python"

    ```python
    from ultralytics import YOLO

    # Load the YOLO11 model
    model = YOLO("yolo11n.pt")

    # Export to MNN format
    model.export(format="mnn")  # creates 'yolo11n.mnn' with fp32 weight
    model.export(format="mnn", half=True)  # creates 'yolo11n.mnn' with fp16 weight
    model.export(format="mnn", int8=True)  # creates 'yolo11n.mnn' with int8 weight
    ```

=== "CLI"

    ```bash
    yolo export model=yolo11n.pt format=mnn           # creates 'yolo11n.mnn' with fp32 weight
    yolo export model=yolo11n.pt format=mnn half=True # creates 'yolo11n.mnn' with fp16 weight
    yolo export model=yolo11n.pt format=mnn int8=True # creates 'yolo11n.mnn' with int8 weight
    ```

For detailed export options, check the Export page in the documentation.

How do I predict with an exported YOLO11 MNN model?

To predict with an exported YOLO11 MNN model, use the predict function from the YOLO class.

!!! example "Predict"

=== "Python"

    ```python
    from ultralytics import YOLO

    # Load the YOLO11 MNN model
    model = YOLO("yolo11n.mnn")

    # Export to MNN format
    results = model("https://ultralytics.com/images/bus.jpg")  # predict with `fp32`
    results = model("https://ultralytics.com/images/bus.jpg", half=True)  # predict with `fp16` if device support

    for result in results:
        result.show()  # display to screen
        result.save(filename="result.jpg")  # save to disk
    ```

=== "CLI"

    ```bash
    yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'             # predict with `fp32`
    yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg' --half=True # predict with `fp16` if device support
    ```

What platforms are supported for MNN?

MNN is versatile and supports various platforms:

  • Mobile: Android, iOS, Harmony.
  • Embedded Systems and IoT Devices: Devices like Raspberry Pi and NVIDIA Jetson.
  • Desktop and Servers: Linux, Windows, and macOS.

How can I deploy Ultralytics YOLO11 MNN models on Mobile Devices?

To deploy your YOLO11 models on Mobile devices:

  1. Build for Android: Follow the MNN Android guide.
  2. Build for iOS: Follow the MNN iOS guide.
  3. Build for Harmony: Follow the MNN Harmony guide.