image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/cfg/datasets/SKU-110K.yaml

59 lines
2.5 KiB
YAML

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
# Example usage: yolo train data=SKU-110K.yaml
# parent
# ├── ultralytics
# └── datasets
# └── SKU-110K ← downloads here (13.6 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: SKU-110K # dataset root dir
train: train.txt # train images (relative to 'path') 8219 images
val: val.txt # val images (relative to 'path') 588 images
test: test.txt # test images (optional) 2936 images
# Classes
names:
0: object
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import shutil
from pathlib import Path
import numpy as np
import pandas as pd
from tqdm import tqdm
from ultralytics.utils.downloads import download
from ultralytics.utils.ops import xyxy2xywh
# Download
dir = Path(yaml["path"]) # dataset root dir
parent = Path(dir.parent) # download dir
urls = ["http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz"]
download(urls, dir=parent)
# Rename directories
if dir.exists():
shutil.rmtree(dir)
(parent / "SKU110K_fixed").rename(dir) # rename dir
(dir / "labels").mkdir(parents=True, exist_ok=True) # create labels dir
# Convert labels
names = "image", "x1", "y1", "x2", "y2", "class", "image_width", "image_height" # column names
for d in "annotations_train.csv", "annotations_val.csv", "annotations_test.csv":
x = pd.read_csv(dir / "annotations" / d, names=names).values # annotations
images, unique_images = x[:, 0], np.unique(x[:, 0])
with open((dir / d).with_suffix(".txt").__str__().replace("annotations_", ""), "w", encoding="utf-8") as f:
f.writelines(f"./images/{s}\n" for s in unique_images)
for im in tqdm(unique_images, desc=f"Converting {dir / d}"):
cls = 0 # single-class dataset
with open((dir / "labels" / im).with_suffix(".txt"), "a", encoding="utf-8") as f:
for r in x[images == im]:
w, h = r[6], r[7] # image width, height
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label