image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/data/split.py

139 lines
5.0 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import random
import shutil
from pathlib import Path
from typing import Tuple, Union
from ultralytics.data.utils import IMG_FORMATS, img2label_paths
from ultralytics.utils import DATASETS_DIR, LOGGER, TQDM
def split_classify_dataset(source_dir: Union[str, Path], train_ratio: float = 0.8) -> Path:
"""
Split classification dataset into train and val directories in a new directory.
Creates a new directory '{source_dir}_split' with train/val subdirectories, preserving the original class
structure with an 80/20 split by default.
Directory structure:
Before:
caltech/
├── class1/
│ ├── img1.jpg
│ ├── img2.jpg
│ └── ...
├── class2/
│ ├── img1.jpg
│ └── ...
└── ...
After:
caltech_split/
├── train/
│ ├── class1/
│ │ ├── img1.jpg
│ │ └── ...
│ ├── class2/
│ │ ├── img1.jpg
│ │ └── ...
│ └── ...
└── val/
├── class1/
│ ├── img2.jpg
│ └── ...
├── class2/
│ └── ...
└── ...
Args:
source_dir (str | Path): Path to classification dataset root directory.
train_ratio (float): Ratio for train split, between 0 and 1.
Returns:
(Path): Path to the created split directory.
Examples:
Split dataset with default 80/20 ratio
>>> split_classify_dataset("path/to/caltech")
Split with custom ratio
>>> split_classify_dataset("path/to/caltech", 0.75)
"""
source_path = Path(source_dir)
split_path = Path(f"{source_path}_split")
train_path, val_path = split_path / "train", split_path / "val"
# Create directory structure
split_path.mkdir(exist_ok=True)
train_path.mkdir(exist_ok=True)
val_path.mkdir(exist_ok=True)
# Process class directories
class_dirs = [d for d in source_path.iterdir() if d.is_dir()]
total_images = sum(len(list(d.glob("*.*"))) for d in class_dirs)
stats = f"{len(class_dirs)} classes, {total_images} images"
LOGGER.info(f"Splitting {source_path} ({stats}) into {train_ratio:.0%} train, {1 - train_ratio:.0%} val...")
for class_dir in class_dirs:
# Create class directories
(train_path / class_dir.name).mkdir(exist_ok=True)
(val_path / class_dir.name).mkdir(exist_ok=True)
# Split and copy files
image_files = list(class_dir.glob("*.*"))
random.shuffle(image_files)
split_idx = int(len(image_files) * train_ratio)
for img in image_files[:split_idx]:
shutil.copy2(img, train_path / class_dir.name / img.name)
for img in image_files[split_idx:]:
shutil.copy2(img, val_path / class_dir.name / img.name)
LOGGER.info(f"Split complete in {split_path}")
return split_path
def autosplit(
path: Path = DATASETS_DIR / "coco8/images",
weights: Tuple[float, float, float] = (0.9, 0.1, 0.0),
annotated_only: bool = False,
) -> None:
"""
Automatically split a dataset into train/val/test splits and save the resulting splits into autosplit_*.txt files.
Args:
path (Path): Path to images directory.
weights (tuple): Train, validation, and test split fractions.
annotated_only (bool): If True, only images with an associated txt file are used.
Examples:
Split images with default weights
>>> from ultralytics.data.split import autosplit
>>> autosplit()
Split with custom weights and annotated images only
>>> autosplit(path="path/to/images", weights=(0.8, 0.15, 0.05), annotated_only=True)
"""
path = Path(path) # images dir
files = sorted(x for x in path.rglob("*.*") if x.suffix[1:].lower() in IMG_FORMATS) # image files only
n = len(files) # number of files
random.seed(0) # for reproducibility
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
txt = ["autosplit_train.txt", "autosplit_val.txt", "autosplit_test.txt"] # 3 txt files
for x in txt:
if (path.parent / x).exists():
(path.parent / x).unlink() # remove existing
LOGGER.info(f"Autosplitting images from {path}" + ", using *.txt labeled images only" * annotated_only)
for i, img in TQDM(zip(indices, files), total=n):
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
with open(path.parent / txt[i], "a", encoding="utf-8") as f:
f.write(f"./{img.relative_to(path.parent).as_posix()}" + "\n") # add image to txt file
if __name__ == "__main__":
split_classify_dataset("caltech101")