image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/models/fastsam/predict.py

181 lines
8.8 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import torch
from PIL import Image
from ultralytics.models.yolo.segment import SegmentationPredictor
from ultralytics.utils import DEFAULT_CFG, checks
from ultralytics.utils.metrics import box_iou
from ultralytics.utils.ops import scale_masks
from .utils import adjust_bboxes_to_image_border
class FastSAMPredictor(SegmentationPredictor):
"""
FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks.
This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
adjusts post-processing steps to incorporate mask prediction and non-maximum suppression while optimizing for
single-class segmentation.
Attributes:
prompts (dict): Dictionary containing prompt information for segmentation (bboxes, points, labels, texts).
device (torch.device): Device on which model and tensors are processed.
clip_model (Any, optional): CLIP model for text-based prompting, loaded on demand.
clip_preprocess (Any, optional): CLIP preprocessing function for images, loaded on demand.
Methods:
postprocess: Apply postprocessing to FastSAM predictions and handle prompts.
prompt: Perform image segmentation inference based on various prompt types.
set_prompts: Set prompts to be used during inference.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initialize the FastSAMPredictor with configuration and callbacks.
This initializes a predictor specialized for Fast SAM (Segment Anything Model) segmentation tasks. The predictor
extends SegmentationPredictor with custom post-processing for mask prediction and non-maximum suppression
optimized for single-class segmentation.
Args:
cfg (dict): Configuration for the predictor.
overrides (dict, optional): Configuration overrides.
_callbacks (list, optional): List of callback functions.
"""
super().__init__(cfg, overrides, _callbacks)
self.prompts = {}
def postprocess(self, preds, img, orig_imgs):
"""
Apply postprocessing to FastSAM predictions and handle prompts.
Args:
preds (List[torch.Tensor]): Raw predictions from the model.
img (torch.Tensor): Input image tensor that was fed to the model.
orig_imgs (List[numpy.ndarray]): Original images before preprocessing.
Returns:
(List[Results]): Processed results with prompts applied.
"""
bboxes = self.prompts.pop("bboxes", None)
points = self.prompts.pop("points", None)
labels = self.prompts.pop("labels", None)
texts = self.prompts.pop("texts", None)
results = super().postprocess(preds, img, orig_imgs)
for result in results:
full_box = torch.tensor(
[0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
)
boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
if idx.numel() != 0:
result.boxes.xyxy[idx] = full_box
return self.prompt(results, bboxes=bboxes, points=points, labels=labels, texts=texts)
def prompt(self, results, bboxes=None, points=None, labels=None, texts=None):
"""
Perform image segmentation inference based on cues like bounding boxes, points, and text prompts.
Args:
results (Results | List[Results]): Original inference results from FastSAM models without any prompts.
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
texts (str | List[str], optional): Textual prompts, a list containing string objects.
Returns:
(List[Results]): Output results filtered and determined by the provided prompts.
"""
if bboxes is None and points is None and texts is None:
return results
prompt_results = []
if not isinstance(results, list):
results = [results]
for result in results:
if len(result) == 0:
prompt_results.append(result)
continue
masks = result.masks.data
if masks.shape[1:] != result.orig_shape:
masks = scale_masks(masks[None], result.orig_shape)[0]
# bboxes prompt
idx = torch.zeros(len(result), dtype=torch.bool, device=self.device)
if bboxes is not None:
bboxes = torch.as_tensor(bboxes, dtype=torch.int32, device=self.device)
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
bbox_areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
mask_areas = torch.stack([masks[:, b[1] : b[3], b[0] : b[2]].sum(dim=(1, 2)) for b in bboxes])
full_mask_areas = torch.sum(masks, dim=(1, 2))
union = bbox_areas[:, None] + full_mask_areas - mask_areas
idx[torch.argmax(mask_areas / union, dim=1)] = True
if points is not None:
points = torch.as_tensor(points, dtype=torch.int32, device=self.device)
points = points[None] if points.ndim == 1 else points
if labels is None:
labels = torch.ones(points.shape[0])
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
assert len(labels) == len(points), (
f"Expected `labels` with same size as `point`, but got {len(labels)} and {len(points)}"
)
point_idx = (
torch.ones(len(result), dtype=torch.bool, device=self.device)
if labels.sum() == 0 # all negative points
else torch.zeros(len(result), dtype=torch.bool, device=self.device)
)
for point, label in zip(points, labels):
point_idx[torch.nonzero(masks[:, point[1], point[0]], as_tuple=True)[0]] = bool(label)
idx |= point_idx
if texts is not None:
if isinstance(texts, str):
texts = [texts]
crop_ims, filter_idx = [], []
for i, b in enumerate(result.boxes.xyxy.tolist()):
x1, y1, x2, y2 = (int(x) for x in b)
if masks[i].sum() <= 100:
filter_idx.append(i)
continue
crop_ims.append(Image.fromarray(result.orig_img[y1:y2, x1:x2, ::-1]))
similarity = self._clip_inference(crop_ims, texts)
text_idx = torch.argmax(similarity, dim=-1) # (M, )
if len(filter_idx):
text_idx += (torch.tensor(filter_idx, device=self.device)[None] <= int(text_idx)).sum(0)
idx[text_idx] = True
prompt_results.append(result[idx])
return prompt_results
def _clip_inference(self, images, texts):
"""
Perform CLIP inference to calculate similarity between images and text prompts.
Args:
images (List[PIL.Image]): List of source images, each should be PIL.Image with RGB channel order.
texts (List[str]): List of prompt texts, each should be a string object.
Returns:
(torch.Tensor): Similarity matrix between given images and texts with shape (M, N).
"""
try:
import clip
except ImportError:
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
import clip
if (not hasattr(self, "clip_model")) or (not hasattr(self, "clip_preprocess")):
self.clip_model, self.clip_preprocess = clip.load("ViT-B/32", device=self.device)
images = torch.stack([self.clip_preprocess(image).to(self.device) for image in images])
tokenized_text = clip.tokenize(texts).to(self.device)
image_features = self.clip_model.encode_image(images)
text_features = self.clip_model.encode_text(tokenized_text)
image_features /= image_features.norm(dim=-1, keepdim=True) # (N, 512)
text_features /= text_features.norm(dim=-1, keepdim=True) # (M, 512)
return (image_features * text_features[:, None]).sum(-1) # (M, N)
def set_prompts(self, prompts):
"""Set prompts to be used during inference."""
self.prompts = prompts