image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/models/nas/model.py

99 lines
3.7 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from pathlib import Path
from typing import Any, Dict
import torch
from ultralytics.engine.model import Model
from ultralytics.utils import DEFAULT_CFG_DICT
from ultralytics.utils.downloads import attempt_download_asset
from ultralytics.utils.torch_utils import model_info
from .predict import NASPredictor
from .val import NASValidator
class NAS(Model):
"""
YOLO-NAS model for object detection.
This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine.
It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
Attributes:
model (torch.nn.Module): The loaded YOLO-NAS model.
task (str): The task type for the model, defaults to 'detect'.
predictor (NASPredictor): The predictor instance for making predictions.
validator (NASValidator): The validator instance for model validation.
Methods:
info: Log model information and return model details.
Examples:
>>> from ultralytics import NAS
>>> model = NAS("yolo_nas_s")
>>> results = model.predict("ultralytics/assets/bus.jpg")
Notes:
YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.
"""
def __init__(self, model: str = "yolo_nas_s.pt") -> None:
"""Initialize the NAS model with the provided or default model."""
assert Path(model).suffix not in {".yaml", ".yml"}, "YOLO-NAS models only support pre-trained models."
super().__init__(model, task="detect")
def _load(self, weights: str, task=None) -> None:
"""
Load an existing NAS model weights or create a new NAS model with pretrained weights.
Args:
weights (str): Path to the model weights file or model name.
task (str, optional): Task type for the model.
"""
import super_gradients
suffix = Path(weights).suffix
if suffix == ".pt":
self.model = torch.load(attempt_download_asset(weights))
elif suffix == "":
self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
# Override the forward method to ignore additional arguments
def new_forward(x, *args, **kwargs):
"""Ignore additional __call__ arguments."""
return self.model._original_forward(x)
self.model._original_forward = self.model.forward
self.model.forward = new_forward
# Standardize model attributes for compatibility
self.model.fuse = lambda verbose=True: self.model
self.model.stride = torch.tensor([32])
self.model.names = dict(enumerate(self.model._class_names))
self.model.is_fused = lambda: False # for info()
self.model.yaml = {} # for info()
self.model.pt_path = weights # for export()
self.model.task = "detect" # for export()
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # for export()
self.model.eval()
def info(self, detailed: bool = False, verbose: bool = True) -> Dict[str, Any]:
"""
Log model information.
Args:
detailed (bool): Show detailed information about model.
verbose (bool): Controls verbosity.
Returns:
(Dict[str, Any]): Model information dictionary.
"""
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
@property
def task_map(self) -> Dict[str, Dict[str, Any]]:
"""Return a dictionary mapping tasks to respective predictor and validator classes."""
return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}