99 lines
3.7 KiB
Python
99 lines
3.7 KiB
Python
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
from pathlib import Path
|
|
from typing import Any, Dict
|
|
|
|
import torch
|
|
|
|
from ultralytics.engine.model import Model
|
|
from ultralytics.utils import DEFAULT_CFG_DICT
|
|
from ultralytics.utils.downloads import attempt_download_asset
|
|
from ultralytics.utils.torch_utils import model_info
|
|
|
|
from .predict import NASPredictor
|
|
from .val import NASValidator
|
|
|
|
|
|
class NAS(Model):
|
|
"""
|
|
YOLO-NAS model for object detection.
|
|
|
|
This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine.
|
|
It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
|
|
|
|
Attributes:
|
|
model (torch.nn.Module): The loaded YOLO-NAS model.
|
|
task (str): The task type for the model, defaults to 'detect'.
|
|
predictor (NASPredictor): The predictor instance for making predictions.
|
|
validator (NASValidator): The validator instance for model validation.
|
|
|
|
Methods:
|
|
info: Log model information and return model details.
|
|
|
|
Examples:
|
|
>>> from ultralytics import NAS
|
|
>>> model = NAS("yolo_nas_s")
|
|
>>> results = model.predict("ultralytics/assets/bus.jpg")
|
|
|
|
Notes:
|
|
YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.
|
|
"""
|
|
|
|
def __init__(self, model: str = "yolo_nas_s.pt") -> None:
|
|
"""Initialize the NAS model with the provided or default model."""
|
|
assert Path(model).suffix not in {".yaml", ".yml"}, "YOLO-NAS models only support pre-trained models."
|
|
super().__init__(model, task="detect")
|
|
|
|
def _load(self, weights: str, task=None) -> None:
|
|
"""
|
|
Load an existing NAS model weights or create a new NAS model with pretrained weights.
|
|
|
|
Args:
|
|
weights (str): Path to the model weights file or model name.
|
|
task (str, optional): Task type for the model.
|
|
"""
|
|
import super_gradients
|
|
|
|
suffix = Path(weights).suffix
|
|
if suffix == ".pt":
|
|
self.model = torch.load(attempt_download_asset(weights))
|
|
elif suffix == "":
|
|
self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
|
|
|
|
# Override the forward method to ignore additional arguments
|
|
def new_forward(x, *args, **kwargs):
|
|
"""Ignore additional __call__ arguments."""
|
|
return self.model._original_forward(x)
|
|
|
|
self.model._original_forward = self.model.forward
|
|
self.model.forward = new_forward
|
|
|
|
# Standardize model attributes for compatibility
|
|
self.model.fuse = lambda verbose=True: self.model
|
|
self.model.stride = torch.tensor([32])
|
|
self.model.names = dict(enumerate(self.model._class_names))
|
|
self.model.is_fused = lambda: False # for info()
|
|
self.model.yaml = {} # for info()
|
|
self.model.pt_path = weights # for export()
|
|
self.model.task = "detect" # for export()
|
|
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # for export()
|
|
self.model.eval()
|
|
|
|
def info(self, detailed: bool = False, verbose: bool = True) -> Dict[str, Any]:
|
|
"""
|
|
Log model information.
|
|
|
|
Args:
|
|
detailed (bool): Show detailed information about model.
|
|
verbose (bool): Controls verbosity.
|
|
|
|
Returns:
|
|
(Dict[str, Any]): Model information dictionary.
|
|
"""
|
|
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
|
|
|
@property
|
|
def task_map(self) -> Dict[str, Dict[str, Any]]:
|
|
"""Return a dictionary mapping tasks to respective predictor and validator classes."""
|
|
return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}
|