image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/models/nas/val.py

40 lines
1.5 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import torch
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import ops
__all__ = ["NASValidator"]
class NASValidator(DetectionValidator):
"""
Ultralytics YOLO NAS Validator for object detection.
Extends DetectionValidator from the Ultralytics models package and is designed to post-process the raw predictions
generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes,
ultimately producing the final detections.
Attributes:
args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU
thresholds.
lb (torch.Tensor): Optional tensor for multilabel NMS.
Examples:
>>> from ultralytics import NAS
>>> model = NAS("yolo_nas_s")
>>> validator = model.validator
>>> # Assumes that raw_preds are available
>>> final_preds = validator.postprocess(raw_preds)
Notes:
This class is generally not instantiated directly but is used internally within the NAS class.
"""
def postprocess(self, preds_in):
"""Apply Non-maximum suppression to prediction outputs."""
boxes = ops.xyxy2xywh(preds_in[0][0]) # Convert bounding box format from xyxy to xywh
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # Concatenate boxes with scores and permute
return super().postprocess(preds)