image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/models/rtdetr/val.py

231 lines
9.3 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from typing import Any, Dict, List, Tuple, Union
import torch
from ultralytics.data import YOLODataset
from ultralytics.data.augment import Compose, Format, v8_transforms
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import colorstr, ops
__all__ = ("RTDETRValidator",) # tuple or list
class RTDETRDataset(YOLODataset):
"""
Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for
real-time detection and tracking tasks.
Attributes:
augment (bool): Whether to apply data augmentation.
rect (bool): Whether to use rectangular training.
use_segments (bool): Whether to use segmentation masks.
use_keypoints (bool): Whether to use keypoint annotations.
imgsz (int): Target image size for training.
Methods:
load_image: Load one image from dataset index.
build_transforms: Build transformation pipeline for the dataset.
Examples:
Initialize an RT-DETR dataset
>>> dataset = RTDETRDataset(img_path="path/to/images", imgsz=640)
>>> image, hw = dataset.load_image(0)
"""
def __init__(self, *args, data=None, **kwargs):
"""
Initialize the RTDETRDataset class by inheriting from the YOLODataset class.
This constructor sets up a dataset specifically optimized for the RT-DETR (Real-Time DEtection and TRacking)
model, building upon the base YOLODataset functionality.
Args:
*args (Any): Variable length argument list passed to the parent YOLODataset class.
data (dict | None): Dictionary containing dataset information. If None, default values will be used.
**kwargs (Any): Additional keyword arguments passed to the parent YOLODataset class.
"""
super().__init__(*args, data=data, **kwargs)
def load_image(self, i, rect_mode=False):
"""
Load one image from dataset index 'i'.
Args:
i (int): Index of the image to load.
rect_mode (bool, optional): Whether to use rectangular mode for batch inference.
Returns:
im (torch.Tensor): The loaded image.
resized_hw (tuple): Height and width of the resized image with shape (2,).
Examples:
Load an image from the dataset
>>> dataset = RTDETRDataset(img_path="path/to/images")
>>> image, hw = dataset.load_image(0)
"""
return super().load_image(i=i, rect_mode=rect_mode)
def build_transforms(self, hyp=None):
"""
Build transformation pipeline for the dataset.
Args:
hyp (dict, optional): Hyperparameters for transformations.
Returns:
(Compose): Composition of transformation functions.
"""
if self.augment:
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
hyp.cutmix = hyp.cutmix if self.augment and not self.rect else 0.0
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
else:
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scale_fill=True)])
transforms = Compose([])
transforms.append(
Format(
bbox_format="xywh",
normalize=True,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask,
)
)
return transforms
class RTDETRValidator(DetectionValidator):
"""
RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for
the RT-DETR (Real-Time DETR) object detection model.
The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for
post-processing, and updates evaluation metrics accordingly.
Attributes:
args (Namespace): Configuration arguments for validation.
data (dict): Dataset configuration dictionary.
Methods:
build_dataset: Build an RTDETR Dataset for validation.
postprocess: Apply Non-maximum suppression to prediction outputs.
Examples:
Initialize and run RT-DETR validation
>>> from ultralytics.models.rtdetr import RTDETRValidator
>>> args = dict(model="rtdetr-l.pt", data="coco8.yaml")
>>> validator = RTDETRValidator(args=args)
>>> validator()
Notes:
For further details on the attributes and methods, refer to the parent DetectionValidator class.
"""
def build_dataset(self, img_path, mode="val", batch=None):
"""
Build an RTDETR Dataset.
Args:
img_path (str): Path to the folder containing images.
mode (str, optional): `train` mode or `val` mode, users are able to customize different augmentations for
each mode.
batch (int, optional): Size of batches, this is for `rect`.
Returns:
(RTDETRDataset): Dataset configured for RT-DETR validation.
"""
return RTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=False, # no augmentation
hyp=self.args,
rect=False, # no rect
cache=self.args.cache or None,
prefix=colorstr(f"{mode}: "),
data=self.data,
)
def postprocess(
self, preds: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor]]
) -> List[Dict[str, torch.Tensor]]:
"""
Apply Non-maximum suppression to prediction outputs.
Args:
preds (torch.Tensor | List | Tuple): Raw predictions from the model. If tensor, should have shape
(batch_size, num_predictions, num_classes + 4) where last dimension contains bbox coords and class scores.
Returns:
(List[Dict[str, torch.Tensor]]): List of dictionaries for each image, each containing:
- 'bboxes': Tensor of shape (N, 4) with bounding box coordinates
- 'conf': Tensor of shape (N,) with confidence scores
- 'cls': Tensor of shape (N,) with class indices
"""
if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
preds = [preds, None]
bs, _, nd = preds[0].shape
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
bboxes *= self.args.imgsz
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
for i, bbox in enumerate(bboxes): # (300, 4)
bbox = ops.xywh2xyxy(bbox)
score, cls = scores[i].max(-1) # (300, )
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
# Sort by confidence to correctly get internal metrics
pred = pred[score.argsort(descending=True)]
outputs[i] = pred[score > self.args.conf]
return [{"bboxes": x[:, :4], "conf": x[:, 4], "cls": x[:, 5]} for x in outputs]
def _prepare_batch(self, si: int, batch: Dict[str, Any]) -> Dict[str, Any]:
"""
Prepare a batch for validation by applying necessary transformations.
Args:
si (int): Batch index.
batch (Dict[str, Any]): Batch data containing images and annotations.
Returns:
(Dict[str, Any]): Prepared batch with transformed annotations containing cls, bboxes,
ori_shape, imgsz, and ratio_pad.
"""
idx = batch["batch_idx"] == si
cls = batch["cls"][idx].squeeze(-1)
bbox = batch["bboxes"][idx]
ori_shape = batch["ori_shape"][si]
imgsz = batch["img"].shape[2:]
ratio_pad = batch["ratio_pad"][si]
if len(cls):
bbox = ops.xywh2xyxy(bbox) # target boxes
bbox[..., [0, 2]] *= ori_shape[1] # native-space pred
bbox[..., [1, 3]] *= ori_shape[0] # native-space pred
return {"cls": cls, "bboxes": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
def _prepare_pred(self, pred: Dict[str, torch.Tensor], pbatch: Dict[str, Any]) -> Dict[str, torch.Tensor]:
"""
Prepare predictions by scaling bounding boxes to original image dimensions.
Args:
pred (Dict[str, torch.Tensor]): Raw predictions containing 'cls', 'bboxes', and 'conf'.
pbatch (Dict[str, torch.Tensor]): Prepared batch information containing 'ori_shape' and other metadata.
Returns:
(Dict[str, torch.Tensor]): Predictions scaled to original image dimensions.
"""
cls = pred["cls"]
if self.args.single_cls:
cls *= 0
bboxes = pred["bboxes"].clone()
bboxes[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred
bboxes[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred
return {"bboxes": bboxes, "conf": pred["conf"], "cls": cls}