image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/nn/modules/block.py

2034 lines
69 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Block modules."""
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.utils.torch_utils import fuse_conv_and_bn
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad
from .transformer import TransformerBlock
__all__ = (
"DFL",
"HGBlock",
"HGStem",
"SPP",
"SPPF",
"C1",
"C2",
"C3",
"C2f",
"C2fAttn",
"ImagePoolingAttn",
"ContrastiveHead",
"BNContrastiveHead",
"C3x",
"C3TR",
"C3Ghost",
"GhostBottleneck",
"Bottleneck",
"BottleneckCSP",
"Proto",
"RepC3",
"ResNetLayer",
"RepNCSPELAN4",
"ELAN1",
"ADown",
"AConv",
"SPPELAN",
"CBFuse",
"CBLinear",
"C3k2",
"C2fPSA",
"C2PSA",
"RepVGGDW",
"CIB",
"C2fCIB",
"Attention",
"PSA",
"SCDown",
"TorchVision",
)
class DFL(nn.Module):
"""
Integral module of Distribution Focal Loss (DFL).
Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
"""
def __init__(self, c1: int = 16):
"""
Initialize a convolutional layer with a given number of input channels.
Args:
c1 (int): Number of input channels.
"""
super().__init__()
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
x = torch.arange(c1, dtype=torch.float)
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
self.c1 = c1
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply the DFL module to input tensor and return transformed output."""
b, _, a = x.shape # batch, channels, anchors
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
class Proto(nn.Module):
"""Ultralytics YOLO models mask Proto module for segmentation models."""
def __init__(self, c1: int, c_: int = 256, c2: int = 32):
"""
Initialize the Ultralytics YOLO models mask Proto module with specified number of protos and masks.
Args:
c1 (int): Input channels.
c_ (int): Intermediate channels.
c2 (int): Output channels (number of protos).
"""
super().__init__()
self.cv1 = Conv(c1, c_, k=3)
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
self.cv2 = Conv(c_, c_, k=3)
self.cv3 = Conv(c_, c2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform a forward pass through layers using an upsampled input image."""
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
class HGStem(nn.Module):
"""
StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1: int, cm: int, c2: int):
"""
Initialize the StemBlock of PPHGNetV2.
Args:
c1 (int): Input channels.
cm (int): Middle channels.
c2 (int): Output channels.
"""
super().__init__()
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass of a PPHGNetV2 backbone layer."""
x = self.stem1(x)
x = F.pad(x, [0, 1, 0, 1])
x2 = self.stem2a(x)
x2 = F.pad(x2, [0, 1, 0, 1])
x2 = self.stem2b(x2)
x1 = self.pool(x)
x = torch.cat([x1, x2], dim=1)
x = self.stem3(x)
x = self.stem4(x)
return x
class HGBlock(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(
self,
c1: int,
cm: int,
c2: int,
k: int = 3,
n: int = 6,
lightconv: bool = False,
shortcut: bool = False,
act: nn.Module = nn.ReLU(),
):
"""
Initialize HGBlock with specified parameters.
Args:
c1 (int): Input channels.
cm (int): Middle channels.
c2 (int): Output channels.
k (int): Kernel size.
n (int): Number of LightConv or Conv blocks.
lightconv (bool): Whether to use LightConv.
shortcut (bool): Whether to use shortcut connection.
act (nn.Module): Activation function.
"""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.ec(self.sc(torch.cat(y, 1)))
return y + x if self.add else y
class SPP(nn.Module):
"""Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
def __init__(self, c1: int, c2: int, k: Tuple[int, ...] = (5, 9, 13)):
"""
Initialize the SPP layer with input/output channels and pooling kernel sizes.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
k (tuple): Kernel sizes for max pooling.
"""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass of the SPP layer, performing spatial pyramid pooling."""
x = self.cv1(x)
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
class SPPF(nn.Module):
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
def __init__(self, c1: int, c2: int, k: int = 5):
"""
Initialize the SPPF layer with given input/output channels and kernel size.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
k (int): Kernel size.
Notes:
This module is equivalent to SPP(k=(5, 9, 13)).
"""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply sequential pooling operations to input and return concatenated feature maps."""
y = [self.cv1(x)]
y.extend(self.m(y[-1]) for _ in range(3))
return self.cv2(torch.cat(y, 1))
class C1(nn.Module):
"""CSP Bottleneck with 1 convolution."""
def __init__(self, c1: int, c2: int, n: int = 1):
"""
Initialize the CSP Bottleneck with 1 convolution.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of convolutions.
"""
super().__init__()
self.cv1 = Conv(c1, c2, 1, 1)
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply convolution and residual connection to input tensor."""
y = self.cv1(x)
return self.m(y) + y
class C2(nn.Module):
"""CSP Bottleneck with 2 convolutions."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
"""
Initialize a CSP Bottleneck with 2 convolutions.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Bottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2)
# self.attention = ChannelAttention(2 * self.c) # or SpatialAttention()
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through the CSP bottleneck with 2 convolutions."""
a, b = self.cv1(x).chunk(2, 1)
return self.cv2(torch.cat((self.m(a), b), 1))
class C2f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5):
"""
Initialize a CSP bottleneck with 2 convolutions.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Bottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass using split() instead of chunk()."""
y = self.cv1(x).split((self.c, self.c), 1)
y = [y[0], y[1]]
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
class C3(nn.Module):
"""CSP Bottleneck with 3 convolutions."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
"""
Initialize the CSP Bottleneck with 3 convolutions.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Bottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through the CSP bottleneck with 3 convolutions."""
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
class C3x(C3):
"""C3 module with cross-convolutions."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
"""
Initialize C3 module with cross-convolutions.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Bottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__(c1, c2, n, shortcut, g, e)
self.c_ = int(c2 * e)
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
class RepC3(nn.Module):
"""Rep C3."""
def __init__(self, c1: int, c2: int, n: int = 3, e: float = 1.0):
"""
Initialize CSP Bottleneck with a single convolution.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of RepConv blocks.
e (float): Expansion ratio.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass of RepC3 module."""
return self.cv3(self.m(self.cv1(x)) + self.cv2(x))
class C3TR(C3):
"""C3 module with TransformerBlock()."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
"""
Initialize C3 module with TransformerBlock.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Transformer blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = TransformerBlock(c_, c_, 4, n)
class C3Ghost(C3):
"""C3 module with GhostBottleneck()."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
"""
Initialize C3 module with GhostBottleneck.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Ghost bottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
class GhostBottleneck(nn.Module):
"""Ghost Bottleneck https://github.com/huawei-noah/Efficient-AI-Backbones."""
def __init__(self, c1: int, c2: int, k: int = 3, s: int = 1):
"""
Initialize Ghost Bottleneck module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
k (int): Kernel size.
s (int): Stride.
"""
super().__init__()
c_ = c2 // 2
self.conv = nn.Sequential(
GhostConv(c1, c_, 1, 1), # pw
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
GhostConv(c_, c2, 1, 1, act=False), # pw-linear
)
self.shortcut = (
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply skip connection and concatenation to input tensor."""
return self.conv(x) + self.shortcut(x)
class Bottleneck(nn.Module):
"""Standard bottleneck."""
def __init__(
self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: Tuple[int, int] = (3, 3), e: float = 0.5
):
"""
Initialize a standard bottleneck module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
shortcut (bool): Whether to use shortcut connection.
g (int): Groups for convolutions.
k (tuple): Kernel sizes for convolutions.
e (float): Expansion ratio.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply bottleneck with optional shortcut connection."""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BottleneckCSP(nn.Module):
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
"""
Initialize CSP Bottleneck.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Bottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.SiLU()
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply CSP bottleneck with 3 convolutions."""
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
class ResNetBlock(nn.Module):
"""ResNet block with standard convolution layers."""
def __init__(self, c1: int, c2: int, s: int = 1, e: int = 4):
"""
Initialize ResNet block.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
s (int): Stride.
e (int): Expansion ratio.
"""
super().__init__()
c3 = e * c2
self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
self.cv3 = Conv(c2, c3, k=1, act=False)
self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through the ResNet block."""
return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))
class ResNetLayer(nn.Module):
"""ResNet layer with multiple ResNet blocks."""
def __init__(self, c1: int, c2: int, s: int = 1, is_first: bool = False, n: int = 1, e: int = 4):
"""
Initialize ResNet layer.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
s (int): Stride.
is_first (bool): Whether this is the first layer.
n (int): Number of ResNet blocks.
e (int): Expansion ratio.
"""
super().__init__()
self.is_first = is_first
if self.is_first:
self.layer = nn.Sequential(
Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
else:
blocks = [ResNetBlock(c1, c2, s, e=e)]
blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
self.layer = nn.Sequential(*blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through the ResNet layer."""
return self.layer(x)
class MaxSigmoidAttnBlock(nn.Module):
"""Max Sigmoid attention block."""
def __init__(self, c1: int, c2: int, nh: int = 1, ec: int = 128, gc: int = 512, scale: bool = False):
"""
Initialize MaxSigmoidAttnBlock.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
nh (int): Number of heads.
ec (int): Embedding channels.
gc (int): Guide channels.
scale (bool): Whether to use learnable scale parameter.
"""
super().__init__()
self.nh = nh
self.hc = c2 // nh
self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
self.gl = nn.Linear(gc, ec)
self.bias = nn.Parameter(torch.zeros(nh))
self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0
def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
"""
Forward pass of MaxSigmoidAttnBlock.
Args:
x (torch.Tensor): Input tensor.
guide (torch.Tensor): Guide tensor.
Returns:
(torch.Tensor): Output tensor after attention.
"""
bs, _, h, w = x.shape
guide = self.gl(guide)
guide = guide.view(bs, guide.shape[1], self.nh, self.hc)
embed = self.ec(x) if self.ec is not None else x
embed = embed.view(bs, self.nh, self.hc, h, w)
aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
aw = aw.max(dim=-1)[0]
aw = aw / (self.hc**0.5)
aw = aw + self.bias[None, :, None, None]
aw = aw.sigmoid() * self.scale
x = self.proj_conv(x)
x = x.view(bs, self.nh, -1, h, w)
x = x * aw.unsqueeze(2)
return x.view(bs, -1, h, w)
class C2fAttn(nn.Module):
"""C2f module with an additional attn module."""
def __init__(
self,
c1: int,
c2: int,
n: int = 1,
ec: int = 128,
nh: int = 1,
gc: int = 512,
shortcut: bool = False,
g: int = 1,
e: float = 0.5,
):
"""
Initialize C2f module with attention mechanism.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Bottleneck blocks.
ec (int): Embedding channels for attention.
nh (int): Number of heads for attention.
gc (int): Guide channels for attention.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((3 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)
def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
"""
Forward pass through C2f layer with attention.
Args:
x (torch.Tensor): Input tensor.
guide (torch.Tensor): Guide tensor for attention.
Returns:
(torch.Tensor): Output tensor after processing.
"""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
y.append(self.attn(y[-1], guide))
return self.cv2(torch.cat(y, 1))
def forward_split(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
"""
Forward pass using split() instead of chunk().
Args:
x (torch.Tensor): Input tensor.
guide (torch.Tensor): Guide tensor for attention.
Returns:
(torch.Tensor): Output tensor after processing.
"""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
y.append(self.attn(y[-1], guide))
return self.cv2(torch.cat(y, 1))
class ImagePoolingAttn(nn.Module):
"""ImagePoolingAttn: Enhance the text embeddings with image-aware information."""
def __init__(
self, ec: int = 256, ch: Tuple[int, ...] = (), ct: int = 512, nh: int = 8, k: int = 3, scale: bool = False
):
"""
Initialize ImagePoolingAttn module.
Args:
ec (int): Embedding channels.
ch (tuple): Channel dimensions for feature maps.
ct (int): Channel dimension for text embeddings.
nh (int): Number of attention heads.
k (int): Kernel size for pooling.
scale (bool): Whether to use learnable scale parameter.
"""
super().__init__()
nf = len(ch)
self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
self.proj = nn.Linear(ec, ct)
self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
self.ec = ec
self.nh = nh
self.nf = nf
self.hc = ec // nh
self.k = k
def forward(self, x: List[torch.Tensor], text: torch.Tensor) -> torch.Tensor:
"""
Forward pass of ImagePoolingAttn.
Args:
x (List[torch.Tensor]): List of input feature maps.
text (torch.Tensor): Text embeddings.
Returns:
(torch.Tensor): Enhanced text embeddings.
"""
bs = x[0].shape[0]
assert len(x) == self.nf
num_patches = self.k**2
x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
x = torch.cat(x, dim=-1).transpose(1, 2)
q = self.query(text)
k = self.key(x)
v = self.value(x)
# q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
q = q.reshape(bs, -1, self.nh, self.hc)
k = k.reshape(bs, -1, self.nh, self.hc)
v = v.reshape(bs, -1, self.nh, self.hc)
aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
aw = aw / (self.hc**0.5)
aw = F.softmax(aw, dim=-1)
x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
x = self.proj(x.reshape(bs, -1, self.ec))
return x * self.scale + text
class ContrastiveHead(nn.Module):
"""Implements contrastive learning head for region-text similarity in vision-language models."""
def __init__(self):
"""Initialize ContrastiveHead with region-text similarity parameters."""
super().__init__()
# NOTE: use -10.0 to keep the init cls loss consistency with other losses
self.bias = nn.Parameter(torch.tensor([-10.0]))
self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())
def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
"""
Forward function of contrastive learning.
Args:
x (torch.Tensor): Image features.
w (torch.Tensor): Text features.
Returns:
(torch.Tensor): Similarity scores.
"""
x = F.normalize(x, dim=1, p=2)
w = F.normalize(w, dim=-1, p=2)
x = torch.einsum("bchw,bkc->bkhw", x, w)
return x * self.logit_scale.exp() + self.bias
class BNContrastiveHead(nn.Module):
"""
Batch Norm Contrastive Head using batch norm instead of l2-normalization.
Args:
embed_dims (int): Embed dimensions of text and image features.
"""
def __init__(self, embed_dims: int):
"""
Initialize BNContrastiveHead.
Args:
embed_dims (int): Embedding dimensions for features.
"""
super().__init__()
self.norm = nn.BatchNorm2d(embed_dims)
# NOTE: use -10.0 to keep the init cls loss consistency with other losses
self.bias = nn.Parameter(torch.tensor([-10.0]))
# use -1.0 is more stable
self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
def fuse(self):
"""Fuse the batch normalization layer in the BNContrastiveHead module."""
del self.norm
del self.bias
del self.logit_scale
self.forward = self.forward_fuse
def forward_fuse(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
"""Passes input out unchanged."""
return x
def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
"""
Forward function of contrastive learning with batch normalization.
Args:
x (torch.Tensor): Image features.
w (torch.Tensor): Text features.
Returns:
(torch.Tensor): Similarity scores.
"""
x = self.norm(x)
w = F.normalize(w, dim=-1, p=2)
x = torch.einsum("bchw,bkc->bkhw", x, w)
return x * self.logit_scale.exp() + self.bias
class RepBottleneck(Bottleneck):
"""Rep bottleneck."""
def __init__(
self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: Tuple[int, int] = (3, 3), e: float = 0.5
):
"""
Initialize RepBottleneck.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
shortcut (bool): Whether to use shortcut connection.
g (int): Groups for convolutions.
k (tuple): Kernel sizes for convolutions.
e (float): Expansion ratio.
"""
super().__init__(c1, c2, shortcut, g, k, e)
c_ = int(c2 * e) # hidden channels
self.cv1 = RepConv(c1, c_, k[0], 1)
class RepCSP(C3):
"""Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
"""
Initialize RepCSP layer.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of RepBottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
class RepNCSPELAN4(nn.Module):
"""CSP-ELAN."""
def __init__(self, c1: int, c2: int, c3: int, c4: int, n: int = 1):
"""
Initialize CSP-ELAN layer.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
c3 (int): Intermediate channels.
c4 (int): Intermediate channels for RepCSP.
n (int): Number of RepCSP blocks.
"""
super().__init__()
self.c = c3 // 2
self.cv1 = Conv(c1, c3, 1, 1)
self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through RepNCSPELAN4 layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
def forward_split(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
class ELAN1(RepNCSPELAN4):
"""ELAN1 module with 4 convolutions."""
def __init__(self, c1: int, c2: int, c3: int, c4: int):
"""
Initialize ELAN1 layer.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
c3 (int): Intermediate channels.
c4 (int): Intermediate channels for convolutions.
"""
super().__init__(c1, c2, c3, c4)
self.c = c3 // 2
self.cv1 = Conv(c1, c3, 1, 1)
self.cv2 = Conv(c3 // 2, c4, 3, 1)
self.cv3 = Conv(c4, c4, 3, 1)
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
class AConv(nn.Module):
"""AConv."""
def __init__(self, c1: int, c2: int):
"""
Initialize AConv module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
"""
super().__init__()
self.cv1 = Conv(c1, c2, 3, 2, 1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through AConv layer."""
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
return self.cv1(x)
class ADown(nn.Module):
"""ADown."""
def __init__(self, c1: int, c2: int):
"""
Initialize ADown module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
"""
super().__init__()
self.c = c2 // 2
self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through ADown layer."""
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
x1, x2 = x.chunk(2, 1)
x1 = self.cv1(x1)
x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
x2 = self.cv2(x2)
return torch.cat((x1, x2), 1)
class SPPELAN(nn.Module):
"""SPP-ELAN."""
def __init__(self, c1: int, c2: int, c3: int, k: int = 5):
"""
Initialize SPP-ELAN block.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
c3 (int): Intermediate channels.
k (int): Kernel size for max pooling.
"""
super().__init__()
self.c = c3
self.cv1 = Conv(c1, c3, 1, 1)
self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
self.cv5 = Conv(4 * c3, c2, 1, 1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through SPPELAN layer."""
y = [self.cv1(x)]
y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
return self.cv5(torch.cat(y, 1))
class CBLinear(nn.Module):
"""CBLinear."""
def __init__(self, c1: int, c2s: List[int], k: int = 1, s: int = 1, p: Optional[int] = None, g: int = 1):
"""
Initialize CBLinear module.
Args:
c1 (int): Input channels.
c2s (List[int]): List of output channel sizes.
k (int): Kernel size.
s (int): Stride.
p (int | None): Padding.
g (int): Groups.
"""
super().__init__()
self.c2s = c2s
self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
"""Forward pass through CBLinear layer."""
return self.conv(x).split(self.c2s, dim=1)
class CBFuse(nn.Module):
"""CBFuse."""
def __init__(self, idx: List[int]):
"""
Initialize CBFuse module.
Args:
idx (List[int]): Indices for feature selection.
"""
super().__init__()
self.idx = idx
def forward(self, xs: List[torch.Tensor]) -> torch.Tensor:
"""
Forward pass through CBFuse layer.
Args:
xs (List[torch.Tensor]): List of input tensors.
Returns:
(torch.Tensor): Fused output tensor.
"""
target_size = xs[-1].shape[2:]
res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
return torch.sum(torch.stack(res + xs[-1:]), dim=0)
class C3f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5):
"""
Initialize CSP bottleneck layer with two convolutions.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Bottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv((2 + n) * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through C3f layer."""
y = [self.cv2(x), self.cv1(x)]
y.extend(m(y[-1]) for m in self.m)
return self.cv3(torch.cat(y, 1))
class C3k2(C2f):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(
self, c1: int, c2: int, n: int = 1, c3k: bool = False, e: float = 0.5, g: int = 1, shortcut: bool = True
):
"""
Initialize C3k2 module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of blocks.
c3k (bool): Whether to use C3k blocks.
e (float): Expansion ratio.
g (int): Groups for convolutions.
shortcut (bool): Whether to use shortcut connections.
"""
super().__init__(c1, c2, n, shortcut, g, e)
self.m = nn.ModuleList(
C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
)
class C3k(C3):
"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5, k: int = 3):
"""
Initialize C3k module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of Bottleneck blocks.
shortcut (bool): Whether to use shortcut connections.
g (int): Groups for convolutions.
e (float): Expansion ratio.
k (int): Kernel size.
"""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
class RepVGGDW(torch.nn.Module):
"""RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""
def __init__(self, ed: int) -> None:
"""
Initialize RepVGGDW module.
Args:
ed (int): Input and output channels.
"""
super().__init__()
self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
self.dim = ed
self.act = nn.SiLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Perform a forward pass of the RepVGGDW block.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after applying the depth wise separable convolution.
"""
return self.act(self.conv(x) + self.conv1(x))
def forward_fuse(self, x: torch.Tensor) -> torch.Tensor:
"""
Perform a forward pass of the RepVGGDW block without fusing the convolutions.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after applying the depth wise separable convolution.
"""
return self.act(self.conv(x))
@torch.no_grad()
def fuse(self):
"""
Fuse the convolutional layers in the RepVGGDW block.
This method fuses the convolutional layers and updates the weights and biases accordingly.
"""
conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)
conv_w = conv.weight
conv_b = conv.bias
conv1_w = conv1.weight
conv1_b = conv1.bias
conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])
final_conv_w = conv_w + conv1_w
final_conv_b = conv_b + conv1_b
conv.weight.data.copy_(final_conv_w)
conv.bias.data.copy_(final_conv_b)
self.conv = conv
del self.conv1
class CIB(nn.Module):
"""
Conditional Identity Block (CIB) module.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True.
e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5.
lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False.
"""
def __init__(self, c1: int, c2: int, shortcut: bool = True, e: float = 0.5, lk: bool = False):
"""
Initialize the CIB module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
shortcut (bool): Whether to use shortcut connection.
e (float): Expansion ratio.
lk (bool): Whether to use RepVGGDW.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = nn.Sequential(
Conv(c1, c1, 3, g=c1),
Conv(c1, 2 * c_, 1),
RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_),
Conv(2 * c_, c2, 1),
Conv(c2, c2, 3, g=c2),
)
self.add = shortcut and c1 == c2
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the CIB module.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return x + self.cv1(x) if self.add else self.cv1(x)
class C2fCIB(C2f):
"""
C2fCIB class represents a convolutional block with C2f and CIB modules.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
n (int, optional): Number of CIB modules to stack. Defaults to 1.
shortcut (bool, optional): Whether to use shortcut connection. Defaults to False.
lk (bool, optional): Whether to use local key connection. Defaults to False.
g (int, optional): Number of groups for grouped convolution. Defaults to 1.
e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5.
"""
def __init__(
self, c1: int, c2: int, n: int = 1, shortcut: bool = False, lk: bool = False, g: int = 1, e: float = 0.5
):
"""
Initialize C2fCIB module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of CIB modules.
shortcut (bool): Whether to use shortcut connection.
lk (bool): Whether to use local key connection.
g (int): Groups for convolutions.
e (float): Expansion ratio.
"""
super().__init__(c1, c2, n, shortcut, g, e)
self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))
class Attention(nn.Module):
"""
Attention module that performs self-attention on the input tensor.
Args:
dim (int): The input tensor dimension.
num_heads (int): The number of attention heads.
attn_ratio (float): The ratio of the attention key dimension to the head dimension.
Attributes:
num_heads (int): The number of attention heads.
head_dim (int): The dimension of each attention head.
key_dim (int): The dimension of the attention key.
scale (float): The scaling factor for the attention scores.
qkv (Conv): Convolutional layer for computing the query, key, and value.
proj (Conv): Convolutional layer for projecting the attended values.
pe (Conv): Convolutional layer for positional encoding.
"""
def __init__(self, dim: int, num_heads: int = 8, attn_ratio: float = 0.5):
"""
Initialize multi-head attention module.
Args:
dim (int): Input dimension.
num_heads (int): Number of attention heads.
attn_ratio (float): Attention ratio for key dimension.
"""
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.key_dim = int(self.head_dim * attn_ratio)
self.scale = self.key_dim**-0.5
nh_kd = self.key_dim * num_heads
h = dim + nh_kd * 2
self.qkv = Conv(dim, h, 1, act=False)
self.proj = Conv(dim, dim, 1, act=False)
self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the Attention module.
Args:
x (torch.Tensor): The input tensor.
Returns:
(torch.Tensor): The output tensor after self-attention.
"""
B, C, H, W = x.shape
N = H * W
qkv = self.qkv(x)
q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
[self.key_dim, self.key_dim, self.head_dim], dim=2
)
attn = (q.transpose(-2, -1) @ k) * self.scale
attn = attn.softmax(dim=-1)
x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
x = self.proj(x)
return x
class PSABlock(nn.Module):
"""
PSABlock class implementing a Position-Sensitive Attention block for neural networks.
This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
with optional shortcut connections.
Attributes:
attn (Attention): Multi-head attention module.
ffn (nn.Sequential): Feed-forward neural network module.
add (bool): Flag indicating whether to add shortcut connections.
Methods:
forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.
Examples:
Create a PSABlock and perform a forward pass
>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
>>> input_tensor = torch.randn(1, 128, 32, 32)
>>> output_tensor = psablock(input_tensor)
"""
def __init__(self, c: int, attn_ratio: float = 0.5, num_heads: int = 4, shortcut: bool = True) -> None:
"""
Initialize the PSABlock.
Args:
c (int): Input and output channels.
attn_ratio (float): Attention ratio for key dimension.
num_heads (int): Number of attention heads.
shortcut (bool): Whether to use shortcut connections.
"""
super().__init__()
self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
self.add = shortcut
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Execute a forward pass through PSABlock.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after attention and feed-forward processing.
"""
x = x + self.attn(x) if self.add else self.attn(x)
x = x + self.ffn(x) if self.add else self.ffn(x)
return x
class PSA(nn.Module):
"""
PSA class for implementing Position-Sensitive Attention in neural networks.
This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to
input tensors, enhancing feature extraction and processing capabilities.
Attributes:
c (int): Number of hidden channels after applying the initial convolution.
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
attn (Attention): Attention module for position-sensitive attention.
ffn (nn.Sequential): Feed-forward network for further processing.
Methods:
forward: Applies position-sensitive attention and feed-forward network to the input tensor.
Examples:
Create a PSA module and apply it to an input tensor
>>> psa = PSA(c1=128, c2=128, e=0.5)
>>> input_tensor = torch.randn(1, 128, 64, 64)
>>> output_tensor = psa.forward(input_tensor)
"""
def __init__(self, c1: int, c2: int, e: float = 0.5):
"""
Initialize PSA module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
e (float): Expansion ratio.
"""
super().__init__()
assert c1 == c2
self.c = int(c1 * e)
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c1, 1)
self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Execute forward pass in PSA module.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after attention and feed-forward processing.
"""
a, b = self.cv1(x).split((self.c, self.c), dim=1)
b = b + self.attn(b)
b = b + self.ffn(b)
return self.cv2(torch.cat((a, b), 1))
class C2PSA(nn.Module):
"""
C2PSA module with attention mechanism for enhanced feature extraction and processing.
This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
Attributes:
c (int): Number of hidden channels.
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
Methods:
forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
Notes:
This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
Examples:
>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
>>> input_tensor = torch.randn(1, 256, 64, 64)
>>> output_tensor = c2psa(input_tensor)
"""
def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5):
"""
Initialize C2PSA module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of PSABlock modules.
e (float): Expansion ratio.
"""
super().__init__()
assert c1 == c2
self.c = int(c1 * e)
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c1, 1)
self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Process the input tensor through a series of PSA blocks.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after processing.
"""
a, b = self.cv1(x).split((self.c, self.c), dim=1)
b = self.m(b)
return self.cv2(torch.cat((a, b), 1))
class C2fPSA(C2f):
"""
C2fPSA module with enhanced feature extraction using PSA blocks.
This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.
Attributes:
c (int): Number of hidden channels.
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
m (nn.ModuleList): List of PSA blocks for feature extraction.
Methods:
forward: Performs a forward pass through the C2fPSA module.
forward_split: Performs a forward pass using split() instead of chunk().
Examples:
>>> import torch
>>> from ultralytics.models.common import C2fPSA
>>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
>>> x = torch.randn(1, 64, 128, 128)
>>> output = model(x)
>>> print(output.shape)
"""
def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5):
"""
Initialize C2fPSA module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
n (int): Number of PSABlock modules.
e (float): Expansion ratio.
"""
assert c1 == c2
super().__init__(c1, c2, n=n, e=e)
self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))
class SCDown(nn.Module):
"""
SCDown module for downsampling with separable convolutions.
This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in
efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information.
Attributes:
cv1 (Conv): Pointwise convolution layer that reduces the number of channels.
cv2 (Conv): Depthwise convolution layer that performs spatial downsampling.
Methods:
forward: Applies the SCDown module to the input tensor.
Examples:
>>> import torch
>>> from ultralytics import SCDown
>>> model = SCDown(c1=64, c2=128, k=3, s=2)
>>> x = torch.randn(1, 64, 128, 128)
>>> y = model(x)
>>> print(y.shape)
torch.Size([1, 128, 64, 64])
"""
def __init__(self, c1: int, c2: int, k: int, s: int):
"""
Initialize SCDown module.
Args:
c1 (int): Input channels.
c2 (int): Output channels.
k (int): Kernel size.
s (int): Stride.
"""
super().__init__()
self.cv1 = Conv(c1, c2, 1, 1)
self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Apply convolution and downsampling to the input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Downsampled output tensor.
"""
return self.cv2(self.cv1(x))
class TorchVision(nn.Module):
"""
TorchVision module to allow loading any torchvision model.
This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and customize the model by truncating or unwrapping layers.
Attributes:
m (nn.Module): The loaded torchvision model, possibly truncated and unwrapped.
Args:
model (str): Name of the torchvision model to load.
weights (str, optional): Pre-trained weights to load. Default is "DEFAULT".
unwrap (bool, optional): If True, unwraps the model to a sequential containing all but the last `truncate` layers. Default is True.
truncate (int, optional): Number of layers to truncate from the end if `unwrap` is True. Default is 2.
split (bool, optional): Returns output from intermediate child modules as list. Default is False.
"""
def __init__(
self, model: str, weights: str = "DEFAULT", unwrap: bool = True, truncate: int = 2, split: bool = False
):
"""
Load the model and weights from torchvision.
Args:
model (str): Name of the torchvision model to load.
weights (str): Pre-trained weights to load.
unwrap (bool): Whether to unwrap the model.
truncate (int): Number of layers to truncate.
split (bool): Whether to split the output.
"""
import torchvision # scope for faster 'import ultralytics'
super().__init__()
if hasattr(torchvision.models, "get_model"):
self.m = torchvision.models.get_model(model, weights=weights)
else:
self.m = torchvision.models.__dict__[model](pretrained=bool(weights))
if unwrap:
layers = list(self.m.children())
if isinstance(layers[0], nn.Sequential): # Second-level for some models like EfficientNet, Swin
layers = [*list(layers[0].children()), *layers[1:]]
self.m = nn.Sequential(*(layers[:-truncate] if truncate else layers))
self.split = split
else:
self.split = False
self.m.head = self.m.heads = nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass through the model.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor | List[torch.Tensor]): Output tensor or list of tensors.
"""
if self.split:
y = [x]
y.extend(m(y[-1]) for m in self.m)
else:
y = self.m(x)
return y
class AAttn(nn.Module):
"""
Area-attention module for YOLO models, providing efficient attention mechanisms.
This module implements an area-based attention mechanism that processes input features in a spatially-aware manner,
making it particularly effective for object detection tasks.
Attributes:
area (int): Number of areas the feature map is divided.
num_heads (int): Number of heads into which the attention mechanism is divided.
head_dim (int): Dimension of each attention head.
qkv (Conv): Convolution layer for computing query, key and value tensors.
proj (Conv): Projection convolution layer.
pe (Conv): Position encoding convolution layer.
Methods:
forward: Applies area-attention to input tensor.
Examples:
>>> attn = AAttn(dim=256, num_heads=8, area=4)
>>> x = torch.randn(1, 256, 32, 32)
>>> output = attn(x)
>>> print(output.shape)
torch.Size([1, 256, 32, 32])
"""
def __init__(self, dim: int, num_heads: int, area: int = 1):
"""
Initialize an Area-attention module for YOLO models.
Args:
dim (int): Number of hidden channels.
num_heads (int): Number of heads into which the attention mechanism is divided.
area (int): Number of areas the feature map is divided.
"""
super().__init__()
self.area = area
self.num_heads = num_heads
self.head_dim = head_dim = dim // num_heads
all_head_dim = head_dim * self.num_heads
self.qkv = Conv(dim, all_head_dim * 3, 1, act=False)
self.proj = Conv(all_head_dim, dim, 1, act=False)
self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Process the input tensor through the area-attention.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after area-attention.
"""
B, C, H, W = x.shape
N = H * W
qkv = self.qkv(x).flatten(2).transpose(1, 2)
if self.area > 1:
qkv = qkv.reshape(B * self.area, N // self.area, C * 3)
B, N, _ = qkv.shape
q, k, v = (
qkv.view(B, N, self.num_heads, self.head_dim * 3)
.permute(0, 2, 3, 1)
.split([self.head_dim, self.head_dim, self.head_dim], dim=2)
)
attn = (q.transpose(-2, -1) @ k) * (self.head_dim**-0.5)
attn = attn.softmax(dim=-1)
x = v @ attn.transpose(-2, -1)
x = x.permute(0, 3, 1, 2)
v = v.permute(0, 3, 1, 2)
if self.area > 1:
x = x.reshape(B // self.area, N * self.area, C)
v = v.reshape(B // self.area, N * self.area, C)
B, N, _ = x.shape
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()
v = v.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()
x = x + self.pe(v)
return self.proj(x)
class ABlock(nn.Module):
"""
Area-attention block module for efficient feature extraction in YOLO models.
This module implements an area-attention mechanism combined with a feed-forward network for processing feature maps.
It uses a novel area-based attention approach that is more efficient than traditional self-attention while
maintaining effectiveness.
Attributes:
attn (AAttn): Area-attention module for processing spatial features.
mlp (nn.Sequential): Multi-layer perceptron for feature transformation.
Methods:
_init_weights: Initializes module weights using truncated normal distribution.
forward: Applies area-attention and feed-forward processing to input tensor.
Examples:
>>> block = ABlock(dim=256, num_heads=8, mlp_ratio=1.2, area=1)
>>> x = torch.randn(1, 256, 32, 32)
>>> output = block(x)
>>> print(output.shape)
torch.Size([1, 256, 32, 32])
"""
def __init__(self, dim: int, num_heads: int, mlp_ratio: float = 1.2, area: int = 1):
"""
Initialize an Area-attention block module.
Args:
dim (int): Number of input channels.
num_heads (int): Number of heads into which the attention mechanism is divided.
mlp_ratio (float): Expansion ratio for MLP hidden dimension.
area (int): Number of areas the feature map is divided.
"""
super().__init__()
self.attn = AAttn(dim, num_heads=num_heads, area=area)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False))
self.apply(self._init_weights)
def _init_weights(self, m: nn.Module):
"""
Initialize weights using a truncated normal distribution.
Args:
m (nn.Module): Module to initialize.
"""
if isinstance(m, nn.Conv2d):
nn.init.trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass through ABlock.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after area-attention and feed-forward processing.
"""
x = x + self.attn(x)
return x + self.mlp(x)
class A2C2f(nn.Module):
"""
Area-Attention C2f module for enhanced feature extraction with area-based attention mechanisms.
This module extends the C2f architecture by incorporating area-attention and ABlock layers for improved feature
processing. It supports both area-attention and standard convolution modes.
Attributes:
cv1 (Conv): Initial 1x1 convolution layer that reduces input channels to hidden channels.
cv2 (Conv): Final 1x1 convolution layer that processes concatenated features.
gamma (nn.Parameter | None): Learnable parameter for residual scaling when using area attention.
m (nn.ModuleList): List of either ABlock or C3k modules for feature processing.
Methods:
forward: Processes input through area-attention or standard convolution pathway.
Examples:
>>> m = A2C2f(512, 512, n=1, a2=True, area=1)
>>> x = torch.randn(1, 512, 32, 32)
>>> output = m(x)
>>> print(output.shape)
torch.Size([1, 512, 32, 32])
"""
def __init__(
self,
c1: int,
c2: int,
n: int = 1,
a2: bool = True,
area: int = 1,
residual: bool = False,
mlp_ratio: float = 2.0,
e: float = 0.5,
g: int = 1,
shortcut: bool = True,
):
"""
Initialize Area-Attention C2f module.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
n (int): Number of ABlock or C3k modules to stack.
a2 (bool): Whether to use area attention blocks. If False, uses C3k blocks instead.
area (int): Number of areas the feature map is divided.
residual (bool): Whether to use residual connections with learnable gamma parameter.
mlp_ratio (float): Expansion ratio for MLP hidden dimension.
e (float): Channel expansion ratio for hidden channels.
g (int): Number of groups for grouped convolutions.
shortcut (bool): Whether to use shortcut connections in C3k blocks.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32."
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv((1 + n) * c_, c2, 1)
self.gamma = nn.Parameter(0.01 * torch.ones(c2), requires_grad=True) if a2 and residual else None
self.m = nn.ModuleList(
nn.Sequential(*(ABlock(c_, c_ // 32, mlp_ratio, area) for _ in range(2)))
if a2
else C3k(c_, c_, 2, shortcut, g)
for _ in range(n)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass through A2C2f layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after processing.
"""
y = [self.cv1(x)]
y.extend(m(y[-1]) for m in self.m)
y = self.cv2(torch.cat(y, 1))
if self.gamma is not None:
return x + self.gamma.view(-1, len(self.gamma), 1, 1) * y
return y
class SwiGLUFFN(nn.Module):
"""SwiGLU Feed-Forward Network for transformer-based architectures."""
def __init__(self, gc: int, ec: int, e: int = 4) -> None:
"""
Initialize SwiGLU FFN with input dimension, output dimension, and expansion factor.
Args:
gc (int): Guide channels.
ec (int): Embedding channels.
e (int): Expansion factor.
"""
super().__init__()
self.w12 = nn.Linear(gc, e * ec)
self.w3 = nn.Linear(e * ec // 2, ec)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply SwiGLU transformation to input features."""
x12 = self.w12(x)
x1, x2 = x12.chunk(2, dim=-1)
hidden = F.silu(x1) * x2
return self.w3(hidden)
class Residual(nn.Module):
"""Residual connection wrapper for neural network modules."""
def __init__(self, m: nn.Module) -> None:
"""
Initialize residual module with the wrapped module.
Args:
m (nn.Module): Module to wrap with residual connection.
"""
super().__init__()
self.m = m
nn.init.zeros_(self.m.w3.bias)
# For models with l scale, please change the initialization to
# nn.init.constant_(self.m.w3.weight, 1e-6)
nn.init.zeros_(self.m.w3.weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply residual connection to input features."""
return x + self.m(x)
class SAVPE(nn.Module):
"""Spatial-Aware Visual Prompt Embedding module for feature enhancement."""
def __init__(self, ch: List[int], c3: int, embed: int):
"""
Initialize SAVPE module with channels, intermediate channels, and embedding dimension.
Args:
ch (List[int]): List of input channel dimensions.
c3 (int): Intermediate channels.
embed (int): Embedding dimension.
"""
super().__init__()
self.cv1 = nn.ModuleList(
nn.Sequential(
Conv(x, c3, 3), Conv(c3, c3, 3), nn.Upsample(scale_factor=i * 2) if i in {1, 2} else nn.Identity()
)
for i, x in enumerate(ch)
)
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c3, 1), nn.Upsample(scale_factor=i * 2) if i in {1, 2} else nn.Identity())
for i, x in enumerate(ch)
)
self.c = 16
self.cv3 = nn.Conv2d(3 * c3, embed, 1)
self.cv4 = nn.Conv2d(3 * c3, self.c, 3, padding=1)
self.cv5 = nn.Conv2d(1, self.c, 3, padding=1)
self.cv6 = nn.Sequential(Conv(2 * self.c, self.c, 3), nn.Conv2d(self.c, self.c, 3, padding=1))
def forward(self, x: List[torch.Tensor], vp: torch.Tensor) -> torch.Tensor:
"""Process input features and visual prompts to generate enhanced embeddings."""
y = [self.cv2[i](xi) for i, xi in enumerate(x)]
y = self.cv4(torch.cat(y, dim=1))
x = [self.cv1[i](xi) for i, xi in enumerate(x)]
x = self.cv3(torch.cat(x, dim=1))
B, C, H, W = x.shape
Q = vp.shape[1]
x = x.view(B, C, -1)
y = y.reshape(B, 1, self.c, H, W).expand(-1, Q, -1, -1, -1).reshape(B * Q, self.c, H, W)
vp = vp.reshape(B, Q, 1, H, W).reshape(B * Q, 1, H, W)
y = self.cv6(torch.cat((y, self.cv5(vp)), dim=1))
y = y.reshape(B, Q, self.c, -1)
vp = vp.reshape(B, Q, 1, -1)
score = y * vp + torch.logical_not(vp) * torch.finfo(y.dtype).min
score = F.softmax(score, dim=-1, dtype=torch.float).to(score.dtype)
aggregated = score.transpose(-2, -3) @ x.reshape(B, self.c, C // self.c, -1).transpose(-1, -2)
return F.normalize(aggregated.transpose(-2, -3).reshape(B, Q, -1), dim=-1, p=2)