image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/nn/modules/conv.py

714 lines
21 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Convolution modules."""
import math
from typing import List
import numpy as np
import torch
import torch.nn as nn
__all__ = (
"Conv",
"Conv2",
"LightConv",
"DWConv",
"DWConvTranspose2d",
"ConvTranspose",
"Focus",
"GhostConv",
"ChannelAttention",
"SpatialAttention",
"CBAM",
"Concat",
"RepConv",
"Index",
)
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""
Standard convolution module with batch normalization and activation.
Attributes:
conv (nn.Conv2d): Convolutional layer.
bn (nn.BatchNorm2d): Batch normalization layer.
act (nn.Module): Activation function layer.
default_act (nn.Module): Default activation function (SiLU).
"""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""
Initialize Conv layer with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int, optional): Padding.
g (int): Groups.
d (int): Dilation.
act (bool | nn.Module): Activation function.
"""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""
Apply convolution, batch normalization and activation to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""
Apply convolution and activation without batch normalization.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.conv(x))
class Conv2(Conv):
"""
Simplified RepConv module with Conv fusing.
Attributes:
conv (nn.Conv2d): Main 3x3 convolutional layer.
cv2 (nn.Conv2d): Additional 1x1 convolutional layer.
bn (nn.BatchNorm2d): Batch normalization layer.
act (nn.Module): Activation function layer.
"""
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
"""
Initialize Conv2 layer with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int, optional): Padding.
g (int): Groups.
d (int): Dilation.
act (bool | nn.Module): Activation function.
"""
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
def forward(self, x):
"""
Apply convolution, batch normalization and activation to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.bn(self.conv(x) + self.cv2(x)))
def forward_fuse(self, x):
"""
Apply fused convolution, batch normalization and activation to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.bn(self.conv(x)))
def fuse_convs(self):
"""Fuse parallel convolutions."""
w = torch.zeros_like(self.conv.weight.data)
i = [x // 2 for x in w.shape[2:]]
w[:, :, i[0] : i[0] + 1, i[1] : i[1] + 1] = self.cv2.weight.data.clone()
self.conv.weight.data += w
self.__delattr__("cv2")
self.forward = self.forward_fuse
class LightConv(nn.Module):
"""
Light convolution module with 1x1 and depthwise convolutions.
This implementation is based on the PaddleDetection HGNetV2 backbone.
Attributes:
conv1 (Conv): 1x1 convolution layer.
conv2 (DWConv): Depthwise convolution layer.
"""
def __init__(self, c1, c2, k=1, act=nn.ReLU()):
"""
Initialize LightConv layer with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size for depthwise convolution.
act (nn.Module): Activation function.
"""
super().__init__()
self.conv1 = Conv(c1, c2, 1, act=False)
self.conv2 = DWConv(c2, c2, k, act=act)
def forward(self, x):
"""
Apply 2 convolutions to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.conv2(self.conv1(x))
class DWConv(Conv):
"""Depth-wise convolution module."""
def __init__(self, c1, c2, k=1, s=1, d=1, act=True):
"""
Initialize depth-wise convolution with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
d (int): Dilation.
act (bool | nn.Module): Activation function.
"""
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
class DWConvTranspose2d(nn.ConvTranspose2d):
"""Depth-wise transpose convolution module."""
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):
"""
Initialize depth-wise transpose convolution with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p1 (int): Padding.
p2 (int): Output padding.
"""
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
class ConvTranspose(nn.Module):
"""
Convolution transpose module with optional batch normalization and activation.
Attributes:
conv_transpose (nn.ConvTranspose2d): Transposed convolution layer.
bn (nn.BatchNorm2d | nn.Identity): Batch normalization layer.
act (nn.Module): Activation function layer.
default_act (nn.Module): Default activation function (SiLU).
"""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
"""
Initialize ConvTranspose layer with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int): Padding.
bn (bool): Use batch normalization.
act (bool | nn.Module): Activation function.
"""
super().__init__()
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""
Apply transposed convolution, batch normalization and activation to input.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.bn(self.conv_transpose(x)))
def forward_fuse(self, x):
"""
Apply activation and convolution transpose operation to input.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.conv_transpose(x))
class Focus(nn.Module):
"""
Focus module for concentrating feature information.
Slices input tensor into 4 parts and concatenates them in the channel dimension.
Attributes:
conv (Conv): Convolution layer.
"""
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
"""
Initialize Focus module with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int, optional): Padding.
g (int): Groups.
act (bool | nn.Module): Activation function.
"""
super().__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
# self.contract = Contract(gain=2)
def forward(self, x):
"""
Apply Focus operation and convolution to input tensor.
Input shape is (B, C, W, H) and output shape is (B, 4C, W/2, H/2).
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
# return self.conv(self.contract(x))
class GhostConv(nn.Module):
"""
Ghost Convolution module.
Generates more features with fewer parameters by using cheap operations.
Attributes:
cv1 (Conv): Primary convolution.
cv2 (Conv): Cheap operation convolution.
References:
https://github.com/huawei-noah/Efficient-AI-Backbones
"""
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
"""
Initialize Ghost Convolution module with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
g (int): Groups.
act (bool | nn.Module): Activation function.
"""
super().__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
def forward(self, x):
"""
Apply Ghost Convolution to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor with concatenated features.
"""
y = self.cv1(x)
return torch.cat((y, self.cv2(y)), 1)
class RepConv(nn.Module):
"""
RepConv module with training and deploy modes.
This module is used in RT-DETR and can fuse convolutions during inference for efficiency.
Attributes:
conv1 (Conv): 3x3 convolution.
conv2 (Conv): 1x1 convolution.
bn (nn.BatchNorm2d, optional): Batch normalization for identity branch.
act (nn.Module): Activation function.
default_act (nn.Module): Default activation function (SiLU).
References:
https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
"""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
"""
Initialize RepConv module with given parameters.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size.
s (int): Stride.
p (int): Padding.
g (int): Groups.
d (int): Dilation.
act (bool | nn.Module): Activation function.
bn (bool): Use batch normalization for identity branch.
deploy (bool): Deploy mode for inference.
"""
super().__init__()
assert k == 3 and p == 1
self.g = g
self.c1 = c1
self.c2 = c2
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
def forward_fuse(self, x):
"""
Forward pass for deploy mode.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return self.act(self.conv(x))
def forward(self, x):
"""
Forward pass for training mode.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
id_out = 0 if self.bn is None else self.bn(x)
return self.act(self.conv1(x) + self.conv2(x) + id_out)
def get_equivalent_kernel_bias(self):
"""
Calculate equivalent kernel and bias by fusing convolutions.
Returns:
(torch.Tensor): Equivalent kernel
(torch.Tensor): Equivalent bias
"""
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
kernelid, biasid = self._fuse_bn_tensor(self.bn)
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
@staticmethod
def _pad_1x1_to_3x3_tensor(kernel1x1):
"""
Pad a 1x1 kernel to 3x3 size.
Args:
kernel1x1 (torch.Tensor): 1x1 convolution kernel.
Returns:
(torch.Tensor): Padded 3x3 kernel.
"""
if kernel1x1 is None:
return 0
else:
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
def _fuse_bn_tensor(self, branch):
"""
Fuse batch normalization with convolution weights.
Args:
branch (Conv | nn.BatchNorm2d | None): Branch to fuse.
Returns:
kernel (torch.Tensor): Fused kernel.
bias (torch.Tensor): Fused bias.
"""
if branch is None:
return 0, 0
if isinstance(branch, Conv):
kernel = branch.conv.weight
running_mean = branch.bn.running_mean
running_var = branch.bn.running_var
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn.eps
elif isinstance(branch, nn.BatchNorm2d):
if not hasattr(self, "id_tensor"):
input_dim = self.c1 // self.g
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
for i in range(self.c1):
kernel_value[i, i % input_dim, 1, 1] = 1
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
kernel = self.id_tensor
running_mean = branch.running_mean
running_var = branch.running_var
gamma = branch.weight
beta = branch.bias
eps = branch.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
def fuse_convs(self):
"""Fuse convolutions for inference by creating a single equivalent convolution."""
if hasattr(self, "conv"):
return
kernel, bias = self.get_equivalent_kernel_bias()
self.conv = nn.Conv2d(
in_channels=self.conv1.conv.in_channels,
out_channels=self.conv1.conv.out_channels,
kernel_size=self.conv1.conv.kernel_size,
stride=self.conv1.conv.stride,
padding=self.conv1.conv.padding,
dilation=self.conv1.conv.dilation,
groups=self.conv1.conv.groups,
bias=True,
).requires_grad_(False)
self.conv.weight.data = kernel
self.conv.bias.data = bias
for para in self.parameters():
para.detach_()
self.__delattr__("conv1")
self.__delattr__("conv2")
if hasattr(self, "nm"):
self.__delattr__("nm")
if hasattr(self, "bn"):
self.__delattr__("bn")
if hasattr(self, "id_tensor"):
self.__delattr__("id_tensor")
class ChannelAttention(nn.Module):
"""
Channel-attention module for feature recalibration.
Applies attention weights to channels based on global average pooling.
Attributes:
pool (nn.AdaptiveAvgPool2d): Global average pooling.
fc (nn.Conv2d): Fully connected layer implemented as 1x1 convolution.
act (nn.Sigmoid): Sigmoid activation for attention weights.
References:
https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet
"""
def __init__(self, channels: int) -> None:
"""
Initialize Channel-attention module.
Args:
channels (int): Number of input channels.
"""
super().__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
self.act = nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Apply channel attention to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Channel-attended output tensor.
"""
return x * self.act(self.fc(self.pool(x)))
class SpatialAttention(nn.Module):
"""
Spatial-attention module for feature recalibration.
Applies attention weights to spatial dimensions based on channel statistics.
Attributes:
cv1 (nn.Conv2d): Convolution layer for spatial attention.
act (nn.Sigmoid): Sigmoid activation for attention weights.
"""
def __init__(self, kernel_size=7):
"""
Initialize Spatial-attention module.
Args:
kernel_size (int): Size of the convolutional kernel (3 or 7).
"""
super().__init__()
assert kernel_size in {3, 7}, "kernel size must be 3 or 7"
padding = 3 if kernel_size == 7 else 1
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.act = nn.Sigmoid()
def forward(self, x):
"""
Apply spatial attention to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Spatial-attended output tensor.
"""
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
class CBAM(nn.Module):
"""
Convolutional Block Attention Module.
Combines channel and spatial attention mechanisms for comprehensive feature refinement.
Attributes:
channel_attention (ChannelAttention): Channel attention module.
spatial_attention (SpatialAttention): Spatial attention module.
"""
def __init__(self, c1, kernel_size=7):
"""
Initialize CBAM with given parameters.
Args:
c1 (int): Number of input channels.
kernel_size (int): Size of the convolutional kernel for spatial attention.
"""
super().__init__()
self.channel_attention = ChannelAttention(c1)
self.spatial_attention = SpatialAttention(kernel_size)
def forward(self, x):
"""
Apply channel and spatial attention sequentially to input tensor.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Attended output tensor.
"""
return self.spatial_attention(self.channel_attention(x))
class Concat(nn.Module):
"""
Concatenate a list of tensors along specified dimension.
Attributes:
d (int): Dimension along which to concatenate tensors.
"""
def __init__(self, dimension=1):
"""
Initialize Concat module.
Args:
dimension (int): Dimension along which to concatenate tensors.
"""
super().__init__()
self.d = dimension
def forward(self, x: List[torch.Tensor]):
"""
Concatenate input tensors along specified dimension.
Args:
x (List[torch.Tensor]): List of input tensors.
Returns:
(torch.Tensor): Concatenated tensor.
"""
return torch.cat(x, self.d)
class Index(nn.Module):
"""
Returns a particular index of the input.
Attributes:
index (int): Index to select from input.
"""
def __init__(self, index=0):
"""
Initialize Index module.
Args:
index (int): Index to select from input.
"""
super().__init__()
self.index = index
def forward(self, x: List[torch.Tensor]):
"""
Select and return a particular index from input.
Args:
x (List[torch.Tensor]): List of input tensors.
Returns:
(torch.Tensor): Selected tensor.
"""
return x[self.index]