image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/nn/modules/head.py

1229 lines
52 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Model head modules."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import constant_, xavier_uniform_
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
from ultralytics.utils.torch_utils import fuse_conv_and_bn, smart_inference_mode
from .block import DFL, SAVPE, BNContrastiveHead, ContrastiveHead, Proto, Residual, SwiGLUFFN
from .conv import Conv, DWConv
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
from .utils import bias_init_with_prob, linear_init
__all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder", "v10Detect", "YOLOEDetect", "YOLOESegment"
class Detect(nn.Module):
"""
YOLO Detect head for object detection models.
This class implements the detection head used in YOLO models for predicting bounding boxes and class probabilities.
It supports both training and inference modes, with optional end-to-end detection capabilities.
Attributes:
dynamic (bool): Force grid reconstruction.
export (bool): Export mode flag.
format (str): Export format.
end2end (bool): End-to-end detection mode.
max_det (int): Maximum detections per image.
shape (tuple): Input shape.
anchors (torch.Tensor): Anchor points.
strides (torch.Tensor): Feature map strides.
legacy (bool): Backward compatibility for v3/v5/v8/v9 models.
xyxy (bool): Output format, xyxy or xywh.
nc (int): Number of classes.
nl (int): Number of detection layers.
reg_max (int): DFL channels.
no (int): Number of outputs per anchor.
stride (torch.Tensor): Strides computed during build.
cv2 (nn.ModuleList): Convolution layers for box regression.
cv3 (nn.ModuleList): Convolution layers for classification.
dfl (nn.Module): Distribution Focal Loss layer.
one2one_cv2 (nn.ModuleList): One-to-one convolution layers for box regression.
one2one_cv3 (nn.ModuleList): One-to-one convolution layers for classification.
Methods:
forward: Perform forward pass and return predictions.
forward_end2end: Perform forward pass for end-to-end detection.
bias_init: Initialize detection head biases.
decode_bboxes: Decode bounding boxes from predictions.
postprocess: Post-process model predictions.
Examples:
Create a detection head for 80 classes
>>> detect = Detect(nc=80, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = detect(x)
"""
dynamic = False # force grid reconstruction
export = False # export mode
format = None # export format
end2end = False # end2end
max_det = 300 # max_det
shape = None
anchors = torch.empty(0) # init
strides = torch.empty(0) # init
legacy = False # backward compatibility for v3/v5/v8/v9 models
xyxy = False # xyxy or xywh output
def __init__(self, nc: int = 80, ch: Tuple = ()):
"""
Initialize the YOLO detection layer with specified number of classes and channels.
Args:
nc (int): Number of classes.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__()
self.nc = nc # number of classes
self.nl = len(ch) # number of detection layers
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
self.no = nc + self.reg_max * 4 # number of outputs per anchor
self.stride = torch.zeros(self.nl) # strides computed during build
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
)
self.cv3 = (
nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
if self.legacy
else nn.ModuleList(
nn.Sequential(
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
nn.Conv2d(c3, self.nc, 1),
)
for x in ch
)
)
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
if self.end2end:
self.one2one_cv2 = copy.deepcopy(self.cv2)
self.one2one_cv3 = copy.deepcopy(self.cv3)
def forward(self, x: List[torch.Tensor]) -> Union[List[torch.Tensor], Tuple]:
"""Concatenate and return predicted bounding boxes and class probabilities."""
if self.end2end:
return self.forward_end2end(x)
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training: # Training path
return x
y = self._inference(x)
return y if self.export else (y, x)
def forward_end2end(self, x: List[torch.Tensor]) -> Union[dict, Tuple]:
"""
Perform forward pass of the v10Detect module.
Args:
x (List[torch.Tensor]): Input feature maps from different levels.
Returns:
outputs (dict | tuple): Training mode returns dict with one2many and one2one outputs.
Inference mode returns processed detections or tuple with detections and raw outputs.
"""
x_detach = [xi.detach() for xi in x]
one2one = [
torch.cat((self.one2one_cv2[i](x_detach[i]), self.one2one_cv3[i](x_detach[i])), 1) for i in range(self.nl)
]
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training: # Training path
return {"one2many": x, "one2one": one2one}
y = self._inference(one2one)
y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
return y if self.export else (y, {"one2many": x, "one2one": one2one})
def _inference(self, x: List[torch.Tensor]) -> torch.Tensor:
"""
Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.
Args:
x (List[torch.Tensor]): List of feature maps from different detection layers.
Returns:
(torch.Tensor): Concatenated tensor of decoded bounding boxes and class probabilities.
"""
# Inference path
shape = x[0].shape # BCHW
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
if self.format != "imx" and (self.dynamic or self.shape != shape):
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
self.shape = shape
if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}: # avoid TF FlexSplitV ops
box = x_cat[:, : self.reg_max * 4]
cls = x_cat[:, self.reg_max * 4 :]
else:
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
if self.export and self.format in {"tflite", "edgetpu"}:
# Precompute normalization factor to increase numerical stability
# See https://github.com/ultralytics/ultralytics/issues/7371
grid_h = shape[2]
grid_w = shape[3]
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
norm = self.strides / (self.stride[0] * grid_size)
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
elif self.export and self.format == "imx":
dbox = self.decode_bboxes(
self.dfl(box) * self.strides, self.anchors.unsqueeze(0) * self.strides, xywh=False
)
return dbox.transpose(1, 2), cls.sigmoid().permute(0, 2, 1)
else:
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
return torch.cat((dbox, cls.sigmoid()), 1)
def bias_init(self):
"""Initialize Detect() biases, WARNING: requires stride availability."""
m = self # self.model[-1] # Detect() module
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
if self.end2end:
for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor, xywh: bool = True) -> torch.Tensor:
"""Decode bounding boxes from predictions."""
return dist2bbox(bboxes, anchors, xywh=xywh and not (self.end2end or self.xyxy), dim=1)
@staticmethod
def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80) -> torch.Tensor:
"""
Post-process YOLO model predictions.
Args:
preds (torch.Tensor): Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension
format [x, y, w, h, class_probs].
max_det (int): Maximum detections per image.
nc (int, optional): Number of classes.
Returns:
(torch.Tensor): Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last
dimension format [x, y, w, h, max_class_prob, class_index].
"""
batch_size, anchors, _ = preds.shape # i.e. shape(16,8400,84)
boxes, scores = preds.split([4, nc], dim=-1)
index = scores.amax(dim=-1).topk(min(max_det, anchors))[1].unsqueeze(-1)
boxes = boxes.gather(dim=1, index=index.repeat(1, 1, 4))
scores = scores.gather(dim=1, index=index.repeat(1, 1, nc))
scores, index = scores.flatten(1).topk(min(max_det, anchors))
i = torch.arange(batch_size)[..., None] # batch indices
return torch.cat([boxes[i, index // nc], scores[..., None], (index % nc)[..., None].float()], dim=-1)
class Segment(Detect):
"""
YOLO Segment head for segmentation models.
This class extends the Detect head to include mask prediction capabilities for instance segmentation tasks.
Attributes:
nm (int): Number of masks.
npr (int): Number of protos.
proto (Proto): Prototype generation module.
cv4 (nn.ModuleList): Convolution layers for mask coefficients.
Methods:
forward: Return model outputs and mask coefficients.
Examples:
Create a segmentation head
>>> segment = Segment(nc=80, nm=32, npr=256, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = segment(x)
"""
def __init__(self, nc: int = 80, nm: int = 32, npr: int = 256, ch: Tuple = ()):
"""
Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers.
Args:
nc (int): Number of classes.
nm (int): Number of masks.
npr (int): Number of protos.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
self.nm = nm # number of masks
self.npr = npr # number of protos
self.proto = Proto(ch[0], self.npr, self.nm) # protos
c4 = max(ch[0] // 4, self.nm)
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
def forward(self, x: List[torch.Tensor]) -> Union[Tuple, List[torch.Tensor]]:
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
p = self.proto(x[0]) # mask protos
bs = p.shape[0] # batch size
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
x = Detect.forward(self, x)
if self.training:
return x, mc, p
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
class OBB(Detect):
"""
YOLO OBB detection head for detection with rotation models.
This class extends the Detect head to include oriented bounding box prediction with rotation angles.
Attributes:
ne (int): Number of extra parameters.
cv4 (nn.ModuleList): Convolution layers for angle prediction.
angle (torch.Tensor): Predicted rotation angles.
Methods:
forward: Concatenate and return predicted bounding boxes and class probabilities.
decode_bboxes: Decode rotated bounding boxes.
Examples:
Create an OBB detection head
>>> obb = OBB(nc=80, ne=1, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = obb(x)
"""
def __init__(self, nc: int = 80, ne: int = 1, ch: Tuple = ()):
"""
Initialize OBB with number of classes `nc` and layer channels `ch`.
Args:
nc (int): Number of classes.
ne (int): Number of extra parameters.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
self.ne = ne # number of extra parameters
c4 = max(ch[0] // 4, self.ne)
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)
def forward(self, x: List[torch.Tensor]) -> Union[torch.Tensor, Tuple]:
"""Concatenate and return predicted bounding boxes and class probabilities."""
bs = x[0].shape[0] # batch size
angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2) # OBB theta logits
# NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
angle = (angle.sigmoid() - 0.25) * math.pi # [-pi/4, 3pi/4]
# angle = angle.sigmoid() * math.pi / 2 # [0, pi/2]
if not self.training:
self.angle = angle
x = Detect.forward(self, x)
if self.training:
return x, angle
return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor) -> torch.Tensor:
"""Decode rotated bounding boxes."""
return dist2rbox(bboxes, self.angle, anchors, dim=1)
class Pose(Detect):
"""
YOLO Pose head for keypoints models.
This class extends the Detect head to include keypoint prediction capabilities for pose estimation tasks.
Attributes:
kpt_shape (tuple): Number of keypoints and dimensions (2 for x,y or 3 for x,y,visible).
nk (int): Total number of keypoint values.
cv4 (nn.ModuleList): Convolution layers for keypoint prediction.
Methods:
forward: Perform forward pass through YOLO model and return predictions.
kpts_decode: Decode keypoints from predictions.
Examples:
Create a pose detection head
>>> pose = Pose(nc=80, kpt_shape=(17, 3), ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = pose(x)
"""
def __init__(self, nc: int = 80, kpt_shape: Tuple = (17, 3), ch: Tuple = ()):
"""
Initialize YOLO network with default parameters and Convolutional Layers.
Args:
nc (int): Number of classes.
kpt_shape (tuple): Number of keypoints, number of dims (2 for x,y or 3 for x,y,visible).
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
c4 = max(ch[0] // 4, self.nk)
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
def forward(self, x: List[torch.Tensor]) -> Union[torch.Tensor, Tuple]:
"""Perform forward pass through YOLO model and return predictions."""
bs = x[0].shape[0] # batch size
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
x = Detect.forward(self, x)
if self.training:
return x, kpt
pred_kpt = self.kpts_decode(bs, kpt)
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
def kpts_decode(self, bs: int, kpts: torch.Tensor) -> torch.Tensor:
"""Decode keypoints from predictions."""
ndim = self.kpt_shape[1]
if self.export:
if self.format in {
"tflite",
"edgetpu",
}: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
# Precompute normalization factor to increase numerical stability
y = kpts.view(bs, *self.kpt_shape, -1)
grid_h, grid_w = self.shape[2], self.shape[3]
grid_size = torch.tensor([grid_w, grid_h], device=y.device).reshape(1, 2, 1)
norm = self.strides / (self.stride[0] * grid_size)
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * norm
else:
# NCNN fix
y = kpts.view(bs, *self.kpt_shape, -1)
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
if ndim == 3:
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
return a.view(bs, self.nk, -1)
else:
y = kpts.clone()
if ndim == 3:
y[:, 2::ndim] = y[:, 2::ndim].sigmoid() # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug)
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
return y
class Classify(nn.Module):
"""
YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2).
This class implements a classification head that transforms feature maps into class predictions.
Attributes:
export (bool): Export mode flag.
conv (Conv): Convolutional layer for feature transformation.
pool (nn.AdaptiveAvgPool2d): Global average pooling layer.
drop (nn.Dropout): Dropout layer for regularization.
linear (nn.Linear): Linear layer for final classification.
Methods:
forward: Perform forward pass of the YOLO model on input image data.
Examples:
Create a classification head
>>> classify = Classify(c1=1024, c2=1000)
>>> x = torch.randn(1, 1024, 20, 20)
>>> output = classify(x)
"""
export = False # export mode
def __init__(self, c1: int, c2: int, k: int = 1, s: int = 1, p: Optional[int] = None, g: int = 1):
"""
Initialize YOLO classification head to transform input tensor from (b,c1,20,20) to (b,c2) shape.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output classes.
k (int, optional): Kernel size.
s (int, optional): Stride.
p (int, optional): Padding.
g (int, optional): Groups.
"""
super().__init__()
c_ = 1280 # efficientnet_b0 size
self.conv = Conv(c1, c_, k, s, p, g)
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
self.drop = nn.Dropout(p=0.0, inplace=True)
self.linear = nn.Linear(c_, c2) # to x(b,c2)
def forward(self, x: Union[List[torch.Tensor], torch.Tensor]) -> Union[torch.Tensor, Tuple]:
"""Perform forward pass of the YOLO model on input image data."""
if isinstance(x, list):
x = torch.cat(x, 1)
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
if self.training:
return x
y = x.softmax(1) # get final output
return y if self.export else (y, x)
class WorldDetect(Detect):
"""
Head for integrating YOLO detection models with semantic understanding from text embeddings.
This class extends the standard Detect head to incorporate text embeddings for enhanced semantic understanding
in object detection tasks.
Attributes:
cv3 (nn.ModuleList): Convolution layers for embedding features.
cv4 (nn.ModuleList): Contrastive head layers for text-vision alignment.
Methods:
forward: Concatenate and return predicted bounding boxes and class probabilities.
bias_init: Initialize detection head biases.
Examples:
Create a WorldDetect head
>>> world_detect = WorldDetect(nc=80, embed=512, with_bn=False, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> text = torch.randn(1, 80, 512)
>>> outputs = world_detect(x, text)
"""
def __init__(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: Tuple = ()):
"""
Initialize YOLO detection layer with nc classes and layer channels ch.
Args:
nc (int): Number of classes.
embed (int): Embedding dimension.
with_bn (bool): Whether to use batch normalization in contrastive head.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
c3 = max(ch[0], min(self.nc, 100))
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
def forward(self, x: List[torch.Tensor], text: torch.Tensor) -> Union[List[torch.Tensor], Tuple]:
"""Concatenate and return predicted bounding boxes and class probabilities."""
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
if self.training:
return x
self.no = self.nc + self.reg_max * 4 # self.nc could be changed when inference with different texts
y = self._inference(x)
return y if self.export else (y, x)
def bias_init(self):
"""Initialize Detect() biases, WARNING: requires stride availability."""
m = self # self.model[-1] # Detect() module
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
# b[-1].bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
class LRPCHead(nn.Module):
"""
Lightweight Region Proposal and Classification Head for efficient object detection.
This head combines region proposal filtering with classification to enable efficient detection with
dynamic vocabulary support.
Attributes:
vocab (nn.Module): Vocabulary/classification layer.
pf (nn.Module): Proposal filter module.
loc (nn.Module): Localization module.
enabled (bool): Whether the head is enabled.
Methods:
conv2linear: Convert a 1x1 convolutional layer to a linear layer.
forward: Process classification and localization features to generate detection proposals.
Examples:
Create an LRPC head
>>> vocab = nn.Conv2d(256, 80, 1)
>>> pf = nn.Conv2d(256, 1, 1)
>>> loc = nn.Conv2d(256, 4, 1)
>>> head = LRPCHead(vocab, pf, loc, enabled=True)
"""
def __init__(self, vocab: nn.Module, pf: nn.Module, loc: nn.Module, enabled: bool = True):
"""
Initialize LRPCHead with vocabulary, proposal filter, and localization components.
Args:
vocab (nn.Module): Vocabulary/classification module.
pf (nn.Module): Proposal filter module.
loc (nn.Module): Localization module.
enabled (bool): Whether to enable the head functionality.
"""
super().__init__()
self.vocab = self.conv2linear(vocab) if enabled else vocab
self.pf = pf
self.loc = loc
self.enabled = enabled
def conv2linear(self, conv: nn.Conv2d) -> nn.Linear:
"""Convert a 1x1 convolutional layer to a linear layer."""
assert isinstance(conv, nn.Conv2d) and conv.kernel_size == (1, 1)
linear = nn.Linear(conv.in_channels, conv.out_channels)
linear.weight.data = conv.weight.view(conv.out_channels, -1).data
linear.bias.data = conv.bias.data
return linear
def forward(self, cls_feat: torch.Tensor, loc_feat: torch.Tensor, conf: float) -> Tuple[Tuple, torch.Tensor]:
"""Process classification and localization features to generate detection proposals."""
if self.enabled:
pf_score = self.pf(cls_feat)[0, 0].flatten(0)
mask = pf_score.sigmoid() > conf
cls_feat = cls_feat.flatten(2).transpose(-1, -2)
cls_feat = self.vocab(cls_feat[:, mask] if conf else cls_feat * mask.unsqueeze(-1).int())
return (self.loc(loc_feat), cls_feat.transpose(-1, -2)), mask
else:
cls_feat = self.vocab(cls_feat)
loc_feat = self.loc(loc_feat)
return (loc_feat, cls_feat.flatten(2)), torch.ones(
cls_feat.shape[2] * cls_feat.shape[3], device=cls_feat.device, dtype=torch.bool
)
class YOLOEDetect(Detect):
"""
Head for integrating YOLO detection models with semantic understanding from text embeddings.
This class extends the standard Detect head to support text-guided detection with enhanced semantic understanding
through text embeddings and visual prompt embeddings.
Attributes:
is_fused (bool): Whether the model is fused for inference.
cv3 (nn.ModuleList): Convolution layers for embedding features.
cv4 (nn.ModuleList): Contrastive head layers for text-vision alignment.
reprta (Residual): Residual block for text prompt embeddings.
savpe (SAVPE): Spatial-aware visual prompt embeddings module.
embed (int): Embedding dimension.
Methods:
fuse: Fuse text features with model weights for efficient inference.
get_tpe: Get text prompt embeddings with normalization.
get_vpe: Get visual prompt embeddings with spatial awareness.
forward_lrpc: Process features with fused text embeddings for prompt-free model.
forward: Process features with class prompt embeddings to generate detections.
bias_init: Initialize biases for detection heads.
Examples:
Create a YOLOEDetect head
>>> yoloe_detect = YOLOEDetect(nc=80, embed=512, with_bn=True, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> cls_pe = torch.randn(1, 80, 512)
>>> outputs = yoloe_detect(x, cls_pe)
"""
is_fused = False
def __init__(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: Tuple = ()):
"""
Initialize YOLO detection layer with nc classes and layer channels ch.
Args:
nc (int): Number of classes.
embed (int): Embedding dimension.
with_bn (bool): Whether to use batch normalization in contrastive head.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
c3 = max(ch[0], min(self.nc, 100))
assert c3 <= embed
assert with_bn is True
self.cv3 = (
nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
if self.legacy
else nn.ModuleList(
nn.Sequential(
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
nn.Conv2d(c3, embed, 1),
)
for x in ch
)
)
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
self.reprta = Residual(SwiGLUFFN(embed, embed))
self.savpe = SAVPE(ch, c3, embed)
self.embed = embed
@smart_inference_mode()
def fuse(self, txt_feats: torch.Tensor):
"""Fuse text features with model weights for efficient inference."""
if self.is_fused:
return
assert not self.training
txt_feats = txt_feats.to(torch.float32).squeeze(0)
for cls_head, bn_head in zip(self.cv3, self.cv4):
assert isinstance(cls_head, nn.Sequential)
assert isinstance(bn_head, BNContrastiveHead)
conv = cls_head[-1]
assert isinstance(conv, nn.Conv2d)
logit_scale = bn_head.logit_scale
bias = bn_head.bias
norm = bn_head.norm
t = txt_feats * logit_scale.exp()
conv: nn.Conv2d = fuse_conv_and_bn(conv, norm)
w = conv.weight.data.squeeze(-1).squeeze(-1)
b = conv.bias.data
w = t @ w
b1 = (t @ b.reshape(-1).unsqueeze(-1)).squeeze(-1)
b2 = torch.ones_like(b1) * bias
conv = (
nn.Conv2d(
conv.in_channels,
w.shape[0],
kernel_size=1,
)
.requires_grad_(False)
.to(conv.weight.device)
)
conv.weight.data.copy_(w.unsqueeze(-1).unsqueeze(-1))
conv.bias.data.copy_(b1 + b2)
cls_head[-1] = conv
bn_head.fuse()
del self.reprta
self.reprta = nn.Identity()
self.is_fused = True
def get_tpe(self, tpe: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
"""Get text prompt embeddings with normalization."""
return None if tpe is None else F.normalize(self.reprta(tpe), dim=-1, p=2)
def get_vpe(self, x: List[torch.Tensor], vpe: torch.Tensor) -> torch.Tensor:
"""Get visual prompt embeddings with spatial awareness."""
if vpe.shape[1] == 0: # no visual prompt embeddings
return torch.zeros(x[0].shape[0], 0, self.embed, device=x[0].device)
if vpe.ndim == 4: # (B, N, H, W)
vpe = self.savpe(x, vpe)
assert vpe.ndim == 3 # (B, N, D)
return vpe
def forward_lrpc(self, x: List[torch.Tensor], return_mask: bool = False) -> Union[torch.Tensor, Tuple]:
"""Process features with fused text embeddings to generate detections for prompt-free model."""
masks = []
assert self.is_fused, "Prompt-free inference requires model to be fused!"
for i in range(self.nl):
cls_feat = self.cv3[i](x[i])
loc_feat = self.cv2[i](x[i])
assert isinstance(self.lrpc[i], LRPCHead)
x[i], mask = self.lrpc[i](
cls_feat, loc_feat, 0 if self.export and not self.dynamic else getattr(self, "conf", 0.001)
)
masks.append(mask)
shape = x[0][0].shape
if self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors([b[0] for b in x], self.stride, 0.5))
self.shape = shape
box = torch.cat([xi[0].view(shape[0], self.reg_max * 4, -1) for xi in x], 2)
cls = torch.cat([xi[1] for xi in x], 2)
if self.export and self.format in {"tflite", "edgetpu"}:
# Precompute normalization factor to increase numerical stability
# See https://github.com/ultralytics/ultralytics/issues/7371
grid_h = shape[2]
grid_w = shape[3]
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
norm = self.strides / (self.stride[0] * grid_size)
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
else:
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
mask = torch.cat(masks)
y = torch.cat((dbox if self.export and not self.dynamic else dbox[..., mask], cls.sigmoid()), 1)
if return_mask:
return (y, mask) if self.export else ((y, x), mask)
else:
return y if self.export else (y, x)
def forward(
self, x: List[torch.Tensor], cls_pe: torch.Tensor, return_mask: bool = False
) -> Union[torch.Tensor, Tuple]:
"""Process features with class prompt embeddings to generate detections."""
if hasattr(self, "lrpc"): # for prompt-free inference
return self.forward_lrpc(x, return_mask)
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), cls_pe)), 1)
if self.training:
return x
self.no = self.nc + self.reg_max * 4 # self.nc could be changed when inference with different texts
y = self._inference(x)
return y if self.export else (y, x)
def bias_init(self):
"""Initialize biases for detection heads."""
m = self # self.model[-1] # Detect() module
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
for a, b, c, s in zip(m.cv2, m.cv3, m.cv4, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
# b[-1].bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
b[-1].bias.data[:] = 0.0
c.bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2)
class YOLOESegment(YOLOEDetect):
"""
YOLO segmentation head with text embedding capabilities.
This class extends YOLOEDetect to include mask prediction capabilities for instance segmentation tasks
with text-guided semantic understanding.
Attributes:
nm (int): Number of masks.
npr (int): Number of protos.
proto (Proto): Prototype generation module.
cv5 (nn.ModuleList): Convolution layers for mask coefficients.
Methods:
forward: Return model outputs and mask coefficients.
Examples:
Create a YOLOESegment head
>>> yoloe_segment = YOLOESegment(nc=80, nm=32, npr=256, embed=512, with_bn=True, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> text = torch.randn(1, 80, 512)
>>> outputs = yoloe_segment(x, text)
"""
def __init__(
self, nc: int = 80, nm: int = 32, npr: int = 256, embed: int = 512, with_bn: bool = False, ch: Tuple = ()
):
"""
Initialize YOLOESegment with class count, mask parameters, and embedding dimensions.
Args:
nc (int): Number of classes.
nm (int): Number of masks.
npr (int): Number of protos.
embed (int): Embedding dimension.
with_bn (bool): Whether to use batch normalization in contrastive head.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, embed, with_bn, ch)
self.nm = nm
self.npr = npr
self.proto = Proto(ch[0], self.npr, self.nm)
c5 = max(ch[0] // 4, self.nm)
self.cv5 = nn.ModuleList(nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nm, 1)) for x in ch)
def forward(self, x: List[torch.Tensor], text: torch.Tensor) -> Union[Tuple, torch.Tensor]:
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
p = self.proto(x[0]) # mask protos
bs = p.shape[0] # batch size
mc = torch.cat([self.cv5[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
has_lrpc = hasattr(self, "lrpc")
if not has_lrpc:
x = YOLOEDetect.forward(self, x, text)
else:
x, mask = YOLOEDetect.forward(self, x, text, return_mask=True)
if self.training:
return x, mc, p
if has_lrpc:
mc = (mc * mask.int()) if self.export and not self.dynamic else mc[..., mask]
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
class RTDETRDecoder(nn.Module):
"""
Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.
This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
Transformer decoder layers to output the final predictions.
Attributes:
export (bool): Export mode flag.
hidden_dim (int): Dimension of hidden layers.
nhead (int): Number of heads in multi-head attention.
nl (int): Number of feature levels.
nc (int): Number of classes.
num_queries (int): Number of query points.
num_decoder_layers (int): Number of decoder layers.
input_proj (nn.ModuleList): Input projection layers for backbone features.
decoder (DeformableTransformerDecoder): Transformer decoder module.
denoising_class_embed (nn.Embedding): Class embeddings for denoising.
num_denoising (int): Number of denoising queries.
label_noise_ratio (float): Label noise ratio for training.
box_noise_scale (float): Box noise scale for training.
learnt_init_query (bool): Whether to learn initial query embeddings.
tgt_embed (nn.Embedding): Target embeddings for queries.
query_pos_head (MLP): Query position head.
enc_output (nn.Sequential): Encoder output layers.
enc_score_head (nn.Linear): Encoder score prediction head.
enc_bbox_head (MLP): Encoder bbox prediction head.
dec_score_head (nn.ModuleList): Decoder score prediction heads.
dec_bbox_head (nn.ModuleList): Decoder bbox prediction heads.
Methods:
forward: Run forward pass and return bounding box and classification scores.
Examples:
Create an RTDETRDecoder
>>> decoder = RTDETRDecoder(nc=80, ch=(512, 1024, 2048), hd=256, nq=300)
>>> x = [torch.randn(1, 512, 64, 64), torch.randn(1, 1024, 32, 32), torch.randn(1, 2048, 16, 16)]
>>> outputs = decoder(x)
"""
export = False # export mode
def __init__(
self,
nc: int = 80,
ch: Tuple = (512, 1024, 2048),
hd: int = 256, # hidden dim
nq: int = 300, # num queries
ndp: int = 4, # num decoder points
nh: int = 8, # num head
ndl: int = 6, # num decoder layers
d_ffn: int = 1024, # dim of feedforward
dropout: float = 0.0,
act: nn.Module = nn.ReLU(),
eval_idx: int = -1,
# Training args
nd: int = 100, # num denoising
label_noise_ratio: float = 0.5,
box_noise_scale: float = 1.0,
learnt_init_query: bool = False,
):
"""
Initialize the RTDETRDecoder module with the given parameters.
Args:
nc (int): Number of classes.
ch (tuple): Channels in the backbone feature maps.
hd (int): Dimension of hidden layers.
nq (int): Number of query points.
ndp (int): Number of decoder points.
nh (int): Number of heads in multi-head attention.
ndl (int): Number of decoder layers.
d_ffn (int): Dimension of the feed-forward networks.
dropout (float): Dropout rate.
act (nn.Module): Activation function.
eval_idx (int): Evaluation index.
nd (int): Number of denoising.
label_noise_ratio (float): Label noise ratio.
box_noise_scale (float): Box noise scale.
learnt_init_query (bool): Whether to learn initial query embeddings.
"""
super().__init__()
self.hidden_dim = hd
self.nhead = nh
self.nl = len(ch) # num level
self.nc = nc
self.num_queries = nq
self.num_decoder_layers = ndl
# Backbone feature projection
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
# NOTE: simplified version but it's not consistent with .pt weights.
# self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)
# Transformer module
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
# Denoising part
self.denoising_class_embed = nn.Embedding(nc, hd)
self.num_denoising = nd
self.label_noise_ratio = label_noise_ratio
self.box_noise_scale = box_noise_scale
# Decoder embedding
self.learnt_init_query = learnt_init_query
if learnt_init_query:
self.tgt_embed = nn.Embedding(nq, hd)
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
# Encoder head
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
self.enc_score_head = nn.Linear(hd, nc)
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
# Decoder head
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
self._reset_parameters()
def forward(self, x: List[torch.Tensor], batch: Optional[dict] = None) -> Union[Tuple, torch.Tensor]:
"""
Run the forward pass of the module, returning bounding box and classification scores for the input.
Args:
x (List[torch.Tensor]): List of feature maps from the backbone.
batch (dict, optional): Batch information for training.
Returns:
outputs (tuple | torch.Tensor): During training, returns a tuple of bounding boxes, scores, and other
metadata. During inference, returns a tensor of shape (bs, 300, 4+nc) containing bounding boxes and
class scores.
"""
from ultralytics.models.utils.ops import get_cdn_group
# Input projection and embedding
feats, shapes = self._get_encoder_input(x)
# Prepare denoising training
dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
batch,
self.nc,
self.num_queries,
self.denoising_class_embed.weight,
self.num_denoising,
self.label_noise_ratio,
self.box_noise_scale,
self.training,
)
embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
# Decoder
dec_bboxes, dec_scores = self.decoder(
embed,
refer_bbox,
feats,
shapes,
self.dec_bbox_head,
self.dec_score_head,
self.query_pos_head,
attn_mask=attn_mask,
)
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
if self.training:
return x
# (bs, 300, 4+nc)
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
return y if self.export else (y, x)
def _generate_anchors(
self,
shapes: List[List[int]],
grid_size: float = 0.05,
dtype: torch.dtype = torch.float32,
device: str = "cpu",
eps: float = 1e-2,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Generate anchor bounding boxes for given shapes with specific grid size and validate them.
Args:
shapes (list): List of feature map shapes.
grid_size (float, optional): Base size of grid cells.
dtype (torch.dtype, optional): Data type for tensors.
device (str, optional): Device to create tensors on.
eps (float, optional): Small value for numerical stability.
Returns:
anchors (torch.Tensor): Generated anchor boxes.
valid_mask (torch.Tensor): Valid mask for anchors.
"""
anchors = []
for i, (h, w) in enumerate(shapes):
sy = torch.arange(end=h, dtype=dtype, device=device)
sx = torch.arange(end=w, dtype=dtype, device=device)
grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2)
valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2)
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4)
anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4)
valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
anchors = torch.log(anchors / (1 - anchors))
anchors = anchors.masked_fill(~valid_mask, float("inf"))
return anchors, valid_mask
def _get_encoder_input(self, x: List[torch.Tensor]) -> Tuple[torch.Tensor, List[List[int]]]:
"""
Process and return encoder inputs by getting projection features from input and concatenating them.
Args:
x (List[torch.Tensor]): List of feature maps from the backbone.
Returns:
feats (torch.Tensor): Processed features.
shapes (list): List of feature map shapes.
"""
# Get projection features
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
# Get encoder inputs
feats = []
shapes = []
for feat in x:
h, w = feat.shape[2:]
# [b, c, h, w] -> [b, h*w, c]
feats.append(feat.flatten(2).permute(0, 2, 1))
# [nl, 2]
shapes.append([h, w])
# [b, h*w, c]
feats = torch.cat(feats, 1)
return feats, shapes
def _get_decoder_input(
self,
feats: torch.Tensor,
shapes: List[List[int]],
dn_embed: Optional[torch.Tensor] = None,
dn_bbox: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Generate and prepare the input required for the decoder from the provided features and shapes.
Args:
feats (torch.Tensor): Processed features from encoder.
shapes (list): List of feature map shapes.
dn_embed (torch.Tensor, optional): Denoising embeddings.
dn_bbox (torch.Tensor, optional): Denoising bounding boxes.
Returns:
embeddings (torch.Tensor): Query embeddings for decoder.
refer_bbox (torch.Tensor): Reference bounding boxes.
enc_bboxes (torch.Tensor): Encoded bounding boxes.
enc_scores (torch.Tensor): Encoded scores.
"""
bs = feats.shape[0]
# Prepare input for decoder
anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
features = self.enc_output(valid_mask * feats) # bs, h*w, 256
enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc)
# Query selection
# (bs, num_queries)
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
# (bs, num_queries)
batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
# (bs, num_queries, 256)
top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
# (bs, num_queries, 4)
top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)
# Dynamic anchors + static content
refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors
enc_bboxes = refer_bbox.sigmoid()
if dn_bbox is not None:
refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
if self.training:
refer_bbox = refer_bbox.detach()
if not self.learnt_init_query:
embeddings = embeddings.detach()
if dn_embed is not None:
embeddings = torch.cat([dn_embed, embeddings], 1)
return embeddings, refer_bbox, enc_bboxes, enc_scores
def _reset_parameters(self):
"""Initialize or reset the parameters of the model's various components with predefined weights and biases."""
# Class and bbox head init
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
# NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
# linear_init(self.enc_score_head)
constant_(self.enc_score_head.bias, bias_cls)
constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
# linear_init(cls_)
constant_(cls_.bias, bias_cls)
constant_(reg_.layers[-1].weight, 0.0)
constant_(reg_.layers[-1].bias, 0.0)
linear_init(self.enc_output[0])
xavier_uniform_(self.enc_output[0].weight)
if self.learnt_init_query:
xavier_uniform_(self.tgt_embed.weight)
xavier_uniform_(self.query_pos_head.layers[0].weight)
xavier_uniform_(self.query_pos_head.layers[1].weight)
for layer in self.input_proj:
xavier_uniform_(layer[0].weight)
class v10Detect(Detect):
"""
v10 Detection head from https://arxiv.org/pdf/2405.14458.
This class implements the YOLOv10 detection head with dual-assignment training and consistent dual predictions
for improved efficiency and performance.
Attributes:
end2end (bool): End-to-end detection mode.
max_det (int): Maximum number of detections.
cv3 (nn.ModuleList): Light classification head layers.
one2one_cv3 (nn.ModuleList): One-to-one classification head layers.
Methods:
__init__: Initialize the v10Detect object with specified number of classes and input channels.
forward: Perform forward pass of the v10Detect module.
bias_init: Initialize biases of the Detect module.
fuse: Remove the one2many head for inference optimization.
Examples:
Create a v10Detect head
>>> v10_detect = v10Detect(nc=80, ch=(256, 512, 1024))
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
>>> outputs = v10_detect(x)
"""
end2end = True
def __init__(self, nc: int = 80, ch: Tuple = ()):
"""
Initialize the v10Detect object with the specified number of classes and input channels.
Args:
nc (int): Number of classes.
ch (tuple): Tuple of channel sizes from backbone feature maps.
"""
super().__init__(nc, ch)
c3 = max(ch[0], min(self.nc, 100)) # channels
# Light cls head
self.cv3 = nn.ModuleList(
nn.Sequential(
nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)),
nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)),
nn.Conv2d(c3, self.nc, 1),
)
for x in ch
)
self.one2one_cv3 = copy.deepcopy(self.cv3)
def fuse(self):
"""Remove the one2many head for inference optimization."""
self.cv2 = self.cv3 = nn.ModuleList([nn.Identity()] * self.nl)