image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/nn/modules/utils.py

165 lines
5.9 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import copy
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import uniform_
__all__ = "multi_scale_deformable_attn_pytorch", "inverse_sigmoid"
def _get_clones(module, n):
"""
Create a list of cloned modules from the given module.
Args:
module (nn.Module): The module to be cloned.
n (int): Number of clones to create.
Returns:
(nn.ModuleList): A ModuleList containing n clones of the input module.
Examples:
>>> import torch.nn as nn
>>> layer = nn.Linear(10, 10)
>>> clones = _get_clones(layer, 3)
>>> len(clones)
3
"""
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
def bias_init_with_prob(prior_prob=0.01):
"""
Initialize conv/fc bias value according to a given probability value.
This function calculates the bias initialization value based on a prior probability using the inverse error function.
It's commonly used in object detection models to initialize classification layers with a specific positive prediction
probability.
Args:
prior_prob (float, optional): Prior probability for bias initialization.
Returns:
(float): Bias initialization value calculated from the prior probability.
Examples:
>>> bias = bias_init_with_prob(0.01)
>>> print(f"Bias initialization value: {bias:.4f}")
Bias initialization value: -4.5951
"""
return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init
def linear_init(module):
"""
Initialize the weights and biases of a linear module.
This function initializes the weights of a linear module using a uniform distribution within bounds calculated
from the input dimension. If the module has a bias, it is also initialized.
Args:
module (nn.Module): Linear module to initialize.
Returns:
(nn.Module): The initialized module.
Examples:
>>> import torch.nn as nn
>>> linear = nn.Linear(10, 5)
>>> initialized_linear = linear_init(linear)
"""
bound = 1 / math.sqrt(module.weight.shape[0])
uniform_(module.weight, -bound, bound)
if hasattr(module, "bias") and module.bias is not None:
uniform_(module.bias, -bound, bound)
def inverse_sigmoid(x, eps=1e-5):
"""
Calculate the inverse sigmoid function for a tensor.
This function applies the inverse of the sigmoid function to a tensor, which is useful in various neural network
operations, particularly in attention mechanisms and coordinate transformations.
Args:
x (torch.Tensor): Input tensor with values in range [0, 1].
eps (float, optional): Small epsilon value to prevent numerical instability.
Returns:
(torch.Tensor): Tensor after applying the inverse sigmoid function.
Examples:
>>> x = torch.tensor([0.2, 0.5, 0.8])
>>> inverse_sigmoid(x)
tensor([-1.3863, 0.0000, 1.3863])
"""
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
def multi_scale_deformable_attn_pytorch(
value: torch.Tensor,
value_spatial_shapes: torch.Tensor,
sampling_locations: torch.Tensor,
attention_weights: torch.Tensor,
) -> torch.Tensor:
"""
Implement multi-scale deformable attention in PyTorch.
This function performs deformable attention across multiple feature map scales, allowing the model to attend to
different spatial locations with learned offsets.
Args:
value (torch.Tensor): The value tensor with shape (bs, num_keys, num_heads, embed_dims).
value_spatial_shapes (torch.Tensor): Spatial shapes of the value tensor with shape (num_levels, 2).
sampling_locations (torch.Tensor): The sampling locations with shape
(bs, num_queries, num_heads, num_levels, num_points, 2).
attention_weights (torch.Tensor): The attention weights with shape
(bs, num_queries, num_heads, num_levels, num_points).
Returns:
(torch.Tensor): The output tensor with shape (bs, num_queries, embed_dims).
References:
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
"""
bs, _, num_heads, embed_dims = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level, (H_, W_) in enumerate(value_spatial_shapes):
# bs, H_*W_, num_heads, embed_dims ->
# bs, H_*W_, num_heads*embed_dims ->
# bs, num_heads*embed_dims, H_*W_ ->
# bs*num_heads, embed_dims, H_, W_
value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
# bs, num_queries, num_heads, num_points, 2 ->
# bs, num_heads, num_queries, num_points, 2 ->
# bs*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
# bs*num_heads, embed_dims, num_queries, num_points
sampling_value_l_ = F.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (bs, num_queries, num_heads, num_levels, num_points) ->
# (bs, num_heads, num_queries, num_levels, num_points) ->
# (bs, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
bs * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(bs, num_heads * embed_dims, num_queries)
)
return output.transpose(1, 2).contiguous()