120 lines
4.6 KiB
Python
120 lines
4.6 KiB
Python
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
from functools import partial
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from ultralytics.utils import YAML, IterableSimpleNamespace
|
|
from ultralytics.utils.checks import check_yaml
|
|
|
|
from .bot_sort import BOTSORT
|
|
from .byte_tracker import BYTETracker
|
|
|
|
# A mapping of tracker types to corresponding tracker classes
|
|
TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
|
|
|
|
|
|
def on_predict_start(predictor: object, persist: bool = False) -> None:
|
|
"""
|
|
Initialize trackers for object tracking during prediction.
|
|
|
|
Args:
|
|
predictor (ultralytics.engine.predictor.BasePredictor): The predictor object to initialize trackers for.
|
|
persist (bool, optional): Whether to persist the trackers if they already exist.
|
|
|
|
Examples:
|
|
Initialize trackers for a predictor object
|
|
>>> predictor = SomePredictorClass()
|
|
>>> on_predict_start(predictor, persist=True)
|
|
"""
|
|
if predictor.args.task == "classify":
|
|
raise ValueError("❌ Classification doesn't support 'mode=track'")
|
|
|
|
if hasattr(predictor, "trackers") and persist:
|
|
return
|
|
|
|
tracker = check_yaml(predictor.args.tracker)
|
|
cfg = IterableSimpleNamespace(**YAML.load(tracker))
|
|
|
|
if cfg.tracker_type not in {"bytetrack", "botsort"}:
|
|
raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
|
|
|
|
predictor._feats = None # reset in case used earlier
|
|
if hasattr(predictor, "_hook"):
|
|
predictor._hook.remove()
|
|
if cfg.tracker_type == "botsort" and cfg.with_reid and cfg.model == "auto":
|
|
from ultralytics.nn.modules.head import Detect
|
|
|
|
if not (
|
|
isinstance(predictor.model.model, torch.nn.Module)
|
|
and isinstance(predictor.model.model.model[-1], Detect)
|
|
and not predictor.model.model.model[-1].end2end
|
|
):
|
|
cfg.model = "yolo11n-cls.pt"
|
|
else:
|
|
# Register hook to extract input of Detect layer
|
|
def pre_hook(module, input):
|
|
predictor._feats = list(input[0]) # unroll to new list to avoid mutation in forward
|
|
|
|
predictor._hook = predictor.model.model.model[-1].register_forward_pre_hook(pre_hook)
|
|
|
|
trackers = []
|
|
for _ in range(predictor.dataset.bs):
|
|
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
|
|
trackers.append(tracker)
|
|
if predictor.dataset.mode != "stream": # only need one tracker for other modes
|
|
break
|
|
predictor.trackers = trackers
|
|
predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
|
|
|
|
|
|
def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
|
|
"""
|
|
Postprocess detected boxes and update with object tracking.
|
|
|
|
Args:
|
|
predictor (object): The predictor object containing the predictions.
|
|
persist (bool, optional): Whether to persist the trackers if they already exist.
|
|
|
|
Examples:
|
|
Postprocess predictions and update with tracking
|
|
>>> predictor = YourPredictorClass()
|
|
>>> on_predict_postprocess_end(predictor, persist=True)
|
|
"""
|
|
is_obb = predictor.args.task == "obb"
|
|
is_stream = predictor.dataset.mode == "stream"
|
|
for i, result in enumerate(predictor.results):
|
|
tracker = predictor.trackers[i if is_stream else 0]
|
|
vid_path = predictor.save_dir / Path(result.path).name
|
|
if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
|
|
tracker.reset()
|
|
predictor.vid_path[i if is_stream else 0] = vid_path
|
|
|
|
det = (result.obb if is_obb else result.boxes).cpu().numpy()
|
|
tracks = tracker.update(det, result.orig_img, getattr(result, "feats", None))
|
|
if len(tracks) == 0:
|
|
continue
|
|
idx = tracks[:, -1].astype(int)
|
|
predictor.results[i] = result[idx]
|
|
|
|
update_args = {"obb" if is_obb else "boxes": torch.as_tensor(tracks[:, :-1])}
|
|
predictor.results[i].update(**update_args)
|
|
|
|
|
|
def register_tracker(model: object, persist: bool) -> None:
|
|
"""
|
|
Register tracking callbacks to the model for object tracking during prediction.
|
|
|
|
Args:
|
|
model (object): The model object to register tracking callbacks for.
|
|
persist (bool): Whether to persist the trackers if they already exist.
|
|
|
|
Examples:
|
|
Register tracking callbacks to a YOLO model
|
|
>>> model = YOLOModel()
|
|
>>> register_tracker(model, persist=True)
|
|
"""
|
|
model.add_callback("on_predict_start", partial(on_predict_start, persist=persist))
|
|
model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))
|