image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/trackers/utils/gmc.py

350 lines
14 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import copy
from typing import List, Optional
import cv2
import numpy as np
from ultralytics.utils import LOGGER
class GMC:
"""
Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.
This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.
Attributes:
method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
downscale (int): Factor by which to downscale the frames for processing.
prevFrame (np.ndarray): Previous frame for tracking.
prevKeyPoints (List): Keypoints from the previous frame.
prevDescriptors (np.ndarray): Descriptors from the previous frame.
initializedFirstFrame (bool): Flag indicating if the first frame has been processed.
Methods:
apply: Apply the chosen method to a raw frame and optionally use provided detections.
apply_ecc: Apply the ECC algorithm to a raw frame.
apply_features: Apply feature-based methods like ORB or SIFT to a raw frame.
apply_sparseoptflow: Apply the Sparse Optical Flow method to a raw frame.
reset_params: Reset the internal parameters of the GMC object.
Examples:
Create a GMC object and apply it to a frame
>>> gmc = GMC(method="sparseOptFlow", downscale=2)
>>> frame = np.array([[1, 2, 3], [4, 5, 6]])
>>> processed_frame = gmc.apply(frame)
>>> print(processed_frame)
array([[1, 2, 3],
[4, 5, 6]])
"""
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
"""
Initialize a Generalized Motion Compensation (GMC) object with tracking method and downscale factor.
Args:
method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
downscale (int): Downscale factor for processing frames.
Examples:
Initialize a GMC object with the 'sparseOptFlow' method and a downscale factor of 2
>>> gmc = GMC(method="sparseOptFlow", downscale=2)
"""
super().__init__()
self.method = method
self.downscale = max(1, downscale)
if self.method == "orb":
self.detector = cv2.FastFeatureDetector_create(20)
self.extractor = cv2.ORB_create()
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
elif self.method == "sift":
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
self.matcher = cv2.BFMatcher(cv2.NORM_L2)
elif self.method == "ecc":
number_of_iterations = 5000
termination_eps = 1e-6
self.warp_mode = cv2.MOTION_EUCLIDEAN
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
elif self.method == "sparseOptFlow":
self.feature_params = dict(
maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
)
elif self.method in {"none", "None", None}:
self.method = None
else:
raise ValueError(f"Unknown GMC method: {method}")
self.prevFrame = None
self.prevKeyPoints = None
self.prevDescriptors = None
self.initializedFirstFrame = False
def apply(self, raw_frame: np.ndarray, detections: Optional[List] = None) -> np.ndarray:
"""
Apply object detection on a raw frame using the specified method.
Args:
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
detections (List, optional): List of detections to be used in the processing.
Returns:
(np.ndarray): Transformation matrix with shape (2, 3).
Examples:
>>> gmc = GMC(method="sparseOptFlow")
>>> raw_frame = np.random.rand(480, 640, 3)
>>> transformation_matrix = gmc.apply(raw_frame)
>>> print(transformation_matrix.shape)
(2, 3)
"""
if self.method in {"orb", "sift"}:
return self.apply_features(raw_frame, detections)
elif self.method == "ecc":
return self.apply_ecc(raw_frame)
elif self.method == "sparseOptFlow":
return self.apply_sparseoptflow(raw_frame)
else:
return np.eye(2, 3)
def apply_ecc(self, raw_frame: np.ndarray) -> np.ndarray:
"""
Apply the ECC (Enhanced Correlation Coefficient) algorithm to a raw frame for motion compensation.
Args:
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
Returns:
(np.ndarray): Transformation matrix with shape (2, 3).
Examples:
>>> gmc = GMC(method="ecc")
>>> processed_frame = gmc.apply_ecc(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
>>> print(processed_frame)
[[1. 0. 0.]
[0. 1. 0.]]
"""
height, width, c = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
H = np.eye(2, 3, dtype=np.float32)
# Downscale image for computational efficiency
if self.downscale > 1.0:
frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
# Handle first frame initialization
if not self.initializedFirstFrame:
self.prevFrame = frame.copy()
self.initializedFirstFrame = True
return H
# Run the ECC algorithm to find transformation matrix
try:
(_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
except Exception as e:
LOGGER.warning(f"find transform failed. Set warp as identity {e}")
return H
def apply_features(self, raw_frame: np.ndarray, detections: Optional[List] = None) -> np.ndarray:
"""
Apply feature-based methods like ORB or SIFT to a raw frame.
Args:
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
detections (List, optional): List of detections to be used in the processing.
Returns:
(np.ndarray): Transformation matrix with shape (2, 3).
Examples:
>>> gmc = GMC(method="orb")
>>> raw_frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> transformation_matrix = gmc.apply_features(raw_frame)
>>> print(transformation_matrix.shape)
(2, 3)
"""
height, width, c = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
H = np.eye(2, 3)
# Downscale image for computational efficiency
if self.downscale > 1.0:
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
width = width // self.downscale
height = height // self.downscale
# Create mask for keypoint detection, excluding border regions
mask = np.zeros_like(frame)
mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
# Exclude detection regions from mask to avoid tracking detected objects
if detections is not None:
for det in detections:
tlbr = (det[:4] / self.downscale).astype(np.int_)
mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0
# Find keypoints and compute descriptors
keypoints = self.detector.detect(frame, mask)
keypoints, descriptors = self.extractor.compute(frame, keypoints)
# Handle first frame initialization
if not self.initializedFirstFrame:
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
self.initializedFirstFrame = True
return H
# Match descriptors between previous and current frame
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
# Filter matches based on spatial distance constraints
matches = []
spatialDistances = []
maxSpatialDistance = 0.25 * np.array([width, height])
# Handle empty matches case
if len(knnMatches) == 0:
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
return H
# Apply Lowe's ratio test and spatial distance filtering
for m, n in knnMatches:
if m.distance < 0.9 * n.distance:
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
currKeyPointLocation = keypoints[m.trainIdx].pt
spatialDistance = (
prevKeyPointLocation[0] - currKeyPointLocation[0],
prevKeyPointLocation[1] - currKeyPointLocation[1],
)
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
np.abs(spatialDistance[1]) < maxSpatialDistance[1]
):
spatialDistances.append(spatialDistance)
matches.append(m)
# Filter outliers using statistical analysis
meanSpatialDistances = np.mean(spatialDistances, 0)
stdSpatialDistances = np.std(spatialDistances, 0)
inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances
# Extract good matches and corresponding points
goodMatches = []
prevPoints = []
currPoints = []
for i in range(len(matches)):
if inliers[i, 0] and inliers[i, 1]:
goodMatches.append(matches[i])
prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
currPoints.append(keypoints[matches[i].trainIdx].pt)
prevPoints = np.array(prevPoints)
currPoints = np.array(currPoints)
# Estimate transformation matrix using RANSAC
if prevPoints.shape[0] > 4:
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
# Scale translation components back to original resolution
if self.downscale > 1.0:
H[0, 2] *= self.downscale
H[1, 2] *= self.downscale
else:
LOGGER.warning("not enough matching points")
# Store current frame data for next iteration
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
return H
def apply_sparseoptflow(self, raw_frame: np.ndarray) -> np.ndarray:
"""
Apply Sparse Optical Flow method to a raw frame.
Args:
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
Returns:
(np.ndarray): Transformation matrix with shape (2, 3).
Examples:
>>> gmc = GMC()
>>> result = gmc.apply_sparseoptflow(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
>>> print(result)
[[1. 0. 0.]
[0. 1. 0.]]
"""
height, width, c = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
H = np.eye(2, 3)
# Downscale image for computational efficiency
if self.downscale > 1.0:
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
# Find good features to track
keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)
# Handle first frame initialization
if not self.initializedFirstFrame or self.prevKeyPoints is None:
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.initializedFirstFrame = True
return H
# Calculate optical flow using Lucas-Kanade method
matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
# Extract successfully tracked points
prevPoints = []
currPoints = []
for i in range(len(status)):
if status[i]:
prevPoints.append(self.prevKeyPoints[i])
currPoints.append(matchedKeypoints[i])
prevPoints = np.array(prevPoints)
currPoints = np.array(currPoints)
# Estimate transformation matrix using RANSAC
if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == currPoints.shape[0]):
H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
# Scale translation components back to original resolution
if self.downscale > 1.0:
H[0, 2] *= self.downscale
H[1, 2] *= self.downscale
else:
LOGGER.warning("not enough matching points")
# Store current frame data for next iteration
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
return H
def reset_params(self) -> None:
"""Reset the internal parameters including previous frame, keypoints, and descriptors."""
self.prevFrame = None
self.prevKeyPoints = None
self.prevDescriptors = None
self.initializedFirstFrame = False