207 lines
8.6 KiB
Python
207 lines
8.6 KiB
Python
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from ultralytics.utils import LOGGER
|
|
from ultralytics.utils.checks import check_requirements
|
|
|
|
|
|
class GPUInfo:
|
|
"""
|
|
Manages NVIDIA GPU information via pynvml with robust error handling.
|
|
|
|
Provides methods to query detailed GPU statistics (utilization, memory, temp, power) and select the most idle
|
|
GPUs based on configurable criteria. It safely handles the absence or initialization failure of the pynvml
|
|
library by logging warnings and disabling related features, preventing application crashes.
|
|
|
|
Includes fallback logic using `torch.cuda` for basic device counting if NVML is unavailable during GPU
|
|
selection. Manages NVML initialization and shutdown internally.
|
|
|
|
Attributes:
|
|
pynvml (module | None): The `pynvml` module if successfully imported and initialized, otherwise `None`.
|
|
nvml_available (bool): Indicates if `pynvml` is ready for use. True if import and `nvmlInit()` succeeded,
|
|
False otherwise.
|
|
gpu_stats (List[Dict[str, Any]]): A list of dictionaries, each holding stats for one GPU. Populated on
|
|
initialization and by `refresh_stats()`. Keys include: 'index', 'name', 'utilization' (%),
|
|
'memory_used' (MiB), 'memory_total' (MiB), 'memory_free' (MiB), 'temperature' (C), 'power_draw' (W),
|
|
'power_limit' (W or 'N/A'). Empty if NVML is unavailable or queries fail.
|
|
|
|
Methods:
|
|
refresh_stats: Refresh the internal gpu_stats list by querying NVML.
|
|
print_status: Print GPU status in a compact table format using current stats.
|
|
select_idle_gpu: Select the most idle GPUs based on utilization and free memory.
|
|
shutdown: Shut down NVML if it was initialized.
|
|
|
|
Examples:
|
|
Initialize GPUInfo and print status
|
|
>>> gpu_info = GPUInfo()
|
|
>>> gpu_info.print_status()
|
|
|
|
Select idle GPUs with minimum memory requirements
|
|
>>> selected = gpu_info.select_idle_gpu(count=2, min_memory_fraction=0.2)
|
|
>>> print(f"Selected GPU indices: {selected}")
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initialize GPUInfo, attempting to import and initialize pynvml."""
|
|
self.pynvml: Optional[Any] = None
|
|
self.nvml_available: bool = False
|
|
self.gpu_stats: List[Dict[str, Any]] = []
|
|
|
|
try:
|
|
check_requirements("pynvml>=12.0.0")
|
|
self.pynvml = __import__("pynvml")
|
|
self.pynvml.nvmlInit()
|
|
self.nvml_available = True
|
|
self.refresh_stats()
|
|
except Exception as e:
|
|
LOGGER.warning(f"Failed to initialize pynvml, GPU stats disabled: {e}")
|
|
|
|
def __del__(self):
|
|
"""Ensure NVML is shut down when the object is garbage collected."""
|
|
self.shutdown()
|
|
|
|
def shutdown(self):
|
|
"""Shut down NVML if it was initialized."""
|
|
if self.nvml_available and self.pynvml:
|
|
try:
|
|
self.pynvml.nvmlShutdown()
|
|
except Exception:
|
|
pass
|
|
self.nvml_available = False
|
|
|
|
def refresh_stats(self):
|
|
"""Refresh the internal gpu_stats list by querying NVML."""
|
|
self.gpu_stats = []
|
|
if not self.nvml_available or not self.pynvml:
|
|
return
|
|
|
|
try:
|
|
device_count = self.pynvml.nvmlDeviceGetCount()
|
|
for i in range(device_count):
|
|
self.gpu_stats.append(self._get_device_stats(i))
|
|
except Exception as e:
|
|
LOGGER.warning(f"Error during device query: {e}")
|
|
self.gpu_stats = []
|
|
|
|
def _get_device_stats(self, index: int) -> Dict[str, Any]:
|
|
"""Get stats for a single GPU device."""
|
|
handle = self.pynvml.nvmlDeviceGetHandleByIndex(index)
|
|
memory = self.pynvml.nvmlDeviceGetMemoryInfo(handle)
|
|
util = self.pynvml.nvmlDeviceGetUtilizationRates(handle)
|
|
|
|
def safe_get(func, *args, default=-1, divisor=1):
|
|
try:
|
|
val = func(*args)
|
|
return val // divisor if divisor != 1 and isinstance(val, (int, float)) else val
|
|
except Exception:
|
|
return default
|
|
|
|
temp_type = getattr(self.pynvml, "NVML_TEMPERATURE_GPU", -1)
|
|
|
|
return {
|
|
"index": index,
|
|
"name": self.pynvml.nvmlDeviceGetName(handle),
|
|
"utilization": util.gpu if util else -1,
|
|
"memory_used": memory.used >> 20 if memory else -1, # Convert bytes to MiB
|
|
"memory_total": memory.total >> 20 if memory else -1,
|
|
"memory_free": memory.free >> 20 if memory else -1,
|
|
"temperature": safe_get(self.pynvml.nvmlDeviceGetTemperature, handle, temp_type),
|
|
"power_draw": safe_get(self.pynvml.nvmlDeviceGetPowerUsage, handle, divisor=1000), # Convert mW to W
|
|
"power_limit": safe_get(self.pynvml.nvmlDeviceGetEnforcedPowerLimit, handle, divisor=1000),
|
|
}
|
|
|
|
def print_status(self):
|
|
"""Print GPU status in a compact table format using current stats."""
|
|
self.refresh_stats()
|
|
if not self.gpu_stats:
|
|
LOGGER.warning("No GPU stats available.")
|
|
return
|
|
|
|
stats = self.gpu_stats
|
|
name_len = max(len(gpu.get("name", "N/A")) for gpu in stats)
|
|
hdr = f"{'Idx':<3} {'Name':<{name_len}} {'Util':>6} {'Mem (MiB)':>15} {'Temp':>5} {'Pwr (W)':>10}"
|
|
LOGGER.info(f"\n--- GPU Status ---\n{hdr}\n{'-' * len(hdr)}")
|
|
|
|
for gpu in stats:
|
|
u = f"{gpu['utilization']:>5}%" if gpu["utilization"] >= 0 else " N/A "
|
|
m = f"{gpu['memory_used']:>6}/{gpu['memory_total']:<6}" if gpu["memory_used"] >= 0 else " N/A / N/A "
|
|
t = f"{gpu['temperature']}C" if gpu["temperature"] >= 0 else " N/A "
|
|
p = f"{gpu['power_draw']:>3}/{gpu['power_limit']:<3}" if gpu["power_draw"] >= 0 else " N/A "
|
|
|
|
LOGGER.info(f"{gpu.get('index'):<3d} {gpu.get('name', 'N/A'):<{name_len}} {u:>6} {m:>15} {t:>5} {p:>10}")
|
|
|
|
LOGGER.info(f"{'-' * len(hdr)}\n")
|
|
|
|
def select_idle_gpu(
|
|
self, count: int = 1, min_memory_fraction: float = 0, min_util_fraction: float = 0
|
|
) -> List[int]:
|
|
"""
|
|
Select the most idle GPUs based on utilization and free memory.
|
|
|
|
Args:
|
|
count (int): The number of idle GPUs to select.
|
|
min_memory_fraction (float): Minimum free memory required as a fraction of total memory.
|
|
min_util_fraction (float): Minimum free utilization rate required from 0.0 - 1.0.
|
|
|
|
Returns:
|
|
(List[int]): Indices of the selected GPUs, sorted by idleness (lowest utilization first).
|
|
|
|
Notes:
|
|
Returns fewer than 'count' if not enough qualify or exist.
|
|
Returns basic CUDA indices if NVML fails. Empty list if no GPUs found.
|
|
"""
|
|
assert min_memory_fraction <= 1.0, f"min_memory_fraction must be <= 1.0, got {min_memory_fraction}"
|
|
assert min_util_fraction <= 1.0, f"min_util_fraction must be <= 1.0, got {min_util_fraction}"
|
|
LOGGER.info(
|
|
f"Searching for {count} idle GPUs with free memory >= {min_memory_fraction * 100:.1f}% and free utilization >= {min_util_fraction * 100:.1f}%..."
|
|
)
|
|
|
|
if count <= 0:
|
|
return []
|
|
|
|
self.refresh_stats()
|
|
if not self.gpu_stats:
|
|
LOGGER.warning("NVML stats unavailable.")
|
|
return []
|
|
|
|
# Filter and sort eligible GPUs
|
|
eligible_gpus = [
|
|
gpu
|
|
for gpu in self.gpu_stats
|
|
if gpu.get("memory_free", 0) / gpu.get("memory_total", 1) >= min_memory_fraction
|
|
and (100 - gpu.get("utilization", 100)) >= min_util_fraction * 100
|
|
]
|
|
eligible_gpus.sort(key=lambda x: (x.get("utilization", 101), -x.get("memory_free", 0)))
|
|
|
|
# Select top 'count' indices
|
|
selected = [gpu["index"] for gpu in eligible_gpus[:count]]
|
|
|
|
if selected:
|
|
LOGGER.info(f"Selected idle CUDA devices {selected}")
|
|
else:
|
|
LOGGER.warning(
|
|
f"No GPUs met criteria (Free Mem >= {min_memory_fraction * 100:.1f}% and Free Util >= {min_util_fraction * 100:.1f}%)."
|
|
)
|
|
|
|
return selected
|
|
|
|
|
|
if __name__ == "__main__":
|
|
required_free_mem_fraction = 0.2 # Require 20% free VRAM
|
|
required_free_util_fraction = 0.2 # Require 20% free utilization
|
|
num_gpus_to_select = 1
|
|
|
|
gpu_info = GPUInfo()
|
|
gpu_info.print_status()
|
|
|
|
selected = gpu_info.select_idle_gpu(
|
|
count=num_gpus_to_select,
|
|
min_memory_fraction=required_free_mem_fraction,
|
|
min_util_fraction=required_free_util_fraction,
|
|
)
|
|
if selected:
|
|
print(f"\n==> Using selected GPU indices: {selected}")
|
|
devices = [f"cuda:{idx}" for idx in selected]
|
|
print(f" Target devices: {devices}")
|